Effect of upper body venoarterial ECMO on systemic hemodynamics and oxygenation: A computational study
This study seeks to quantify the effects of upper body veno-arterial extracorporeal membrane oxygenation (VA ECMO) on the anatomical distribution of oxygen delivery in the setting of hypoxic respiratory failure and provide new insights that will guide clinical use of this support strategy to bridge...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-11, Vol.182, p.109124-109124, Article 109124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study seeks to quantify the effects of upper body veno-arterial extracorporeal membrane oxygenation (VA ECMO) on the anatomical distribution of oxygen delivery in the setting of hypoxic respiratory failure and provide new insights that will guide clinical use of this support strategy to bridge patients to lung transplant.
Employing a patient-specific vascular geometry and a quantitative model of oxygen transport, computational simulations were performed to determine hemodynamics and oxygen delivery in the ascending and descending aorta, left and right coronary arteries, and great vessels during upper body VA ECMO support. Oxygen content in ECMO circuit blood flow was varied while considering different degrees of lung failure severity. Using lumped parameter models to dynamically apply perfusion boundary conditions, hemodynamic parameters and oxygen content were analyzed to assess the effect of ECMO supply titration.
The results emphasize the importance of anatomical distribution for tissue oxygen delivery in severe lung failure, with ECMO-derived flow primarily augmenting oxygen content in specific vascular beds. They also demonstrate that although cannulating the subclavian artery can enhance cerebral oxygen delivery, its ability to ensure sufficient oxygen delivery to the coronary circulation seems to be comparatively restricted.
The oxygen delivery to a specific vascular area is primarily determined by the oxygen content in the source of perfusion. Caution is advised with upper body VA ECMO for patients with hypoxic respiratory failure and right ventricle dysfunction, due to potential coronary ischemia. Management of these patients is challenging due to disease progression and organ availability uncertainties.
[Display omitted]
•Upper body VA ECMO is used to support lung transplant candidates with combinant respiratory and RV failure.•CFD and oxygen transport modeling allows for quantitative measurement of the effects of upper body VA ECMO.•Upper body VA ECMO can maintain physiological oxygen delivery to the brain despite profound lung failure.•Coronary ischemia is a risk of upper body VA ECMO due to lack of retrograde flow of blood from ECMO circuit to aortic root.•Use of upper body VA ECMO should be limited to patients with predominantly RV failure and mild to moderate gas exchange impairment. |
---|---|
ISSN: | 0010-4825 1879-0534 1879-0534 |
DOI: | 10.1016/j.compbiomed.2024.109124 |