Regulation of spontaneous phasic firing of rat supraoptic vasopressin neurones in vivo by glutamate receptors

1. Vasopressin-secreting neurones in the rat hypothalamic supraoptic nucleus display patterned spontaneous phasic activity, which is apparently maintained in vivo through yet unidentified neurotransmitter system(s). The present investigation used extracellular recording techniques in anaesthetized L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 1995-04, Vol.484 (Pt 2), p.415-424
Hauptverfasser: Nissen, R, Hu, B, Renaud, L P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Vasopressin-secreting neurones in the rat hypothalamic supraoptic nucleus display patterned spontaneous phasic activity, which is apparently maintained in vivo through yet unidentified neurotransmitter system(s). The present investigation used extracellular recording techniques in anaesthetized Long-Evans rats to evaluate whether the neurotransmitter mechanism underlying phasic firing is provided via a family of ionotropic glutamate receptors. 2. N-Methyl-D-aspartate (NMDA) reliably evoked bursts of activity in twenty-seven of twenty-eight phasic neurones. Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) and kainate also elicited pronounced excitations in twenty-one of twenty-one and and fourteen of fifteen phasic cells, respectively. 3. A rapid blockade of on-going phasic activity was consistently induced following brief applications of both NMDA and non-NMDA receptor antagonists; extended application of antagonists resulted in prolonged silent periods, during which phasic activity failed to recur for minutes. Neither saline nor a cholecystokinin receptor antagonist influenced cell firing. 4. In contrast to putative vasopressin cells, application of NMDA receptor ligands did not affect the spontaneous activity in most putative oxytocin-secreting neurones, whereas kainate and AMPA potently excited seven of nine and four of five putative oxytocin cells, respectively. 5. These results imply that the maintenance of spontaneous phasic discharges in vivo in supraoptic vasopressin-secreting neurones requires tonic synaptic activation involving both NMDA and non-NMDA glutamate receptors. In putative oxytocin-secreting neurones, spontaneous firing appears to be predominantly regulated by non-NMDA receptors. Glutamatergic innervations may be in a unique position to influence the genesis of patterned electrical activity in supraoptic vasopressin neurones.
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.1995.sp020674