Dynamic multilayered control of m6A RNA demethylase activity

Similar to DNA and histone, RNA can also be methylated. In its most common form, a N6-methyladenosine (m6A) chemical modification is introduced into nascent messenger ribonucleic acid (mRNA) by a specialized methyltransferase complex and removed by the RNA demethylases, Fat mass and obesity-associat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-11, Vol.121 (46), p.1
Hauptverfasser: Jaafar, Carine, Aguiar, Ricardo C T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Similar to DNA and histone, RNA can also be methylated. In its most common form, a N6-methyladenosine (m6A) chemical modification is introduced into nascent messenger ribonucleic acid (mRNA) by a specialized methyltransferase complex and removed by the RNA demethylases, Fat mass and obesity-associated (FTO), and ALKBH5. The fate of m6A-marked mRNA is uniquely diverse, ranging from degradation to stabilization/translation, which has been suggested to be largely dependent on its interaction with the family of YT521-B homology (YTH) domain-containing proteins. Here, we highlight a series of control levers that impinge on the RNA demethylases. We present evidence to indicate that intermediary metabolism and various posttranslation modifications modulate the activity, stability, and the subcellular localization of FTO and ALKBH5, further dispelling the notion that m6A methylation is not a dynamic process. We also discuss how examination of these underappreciated regulatory nodes adds a more nuanced view of the role of FTO and ALKBH5 and should guide their study in cancer and nonmalignant conditions alike.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.2317847121