High-throughput identification of repurposable neuroactive drugs with potent anti-glioblastoma activity

Glioblastoma, the most aggressive primary brain cancer, has a dismal prognosis, yet systemic treatment is limited to DNA-alkylating chemotherapies. New therapeutic strategies may emerge from exploring neurodevelopmental and neurophysiological vulnerabilities of glioblastoma. To this end, we systemat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2024-11, Vol.30 (11), p.3196-3208
Hauptverfasser: Lee, Sohyon, Weiss, Tobias, Bühler, Marcel, Mena, Julien, Lottenbach, Zuzanna, Wegmann, Rebekka, Sun, Miaomiao, Bihl, Michel, Augustynek, Bartłomiej, Baumann, Sven P., Goetze, Sandra, van Drogen, Audrey, Pedrioli, Patrick G. A., Penton, David, Festl, Yasmin, Buck, Alicia, Kirschenbaum, Daniel, Zeitlberger, Anna M., Neidert, Marian C., Vasella, Flavio, Rushing, Elisabeth J., Wollscheid, Bernd, Hediger, Matthias A., Weller, Michael, Snijder, Berend
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioblastoma, the most aggressive primary brain cancer, has a dismal prognosis, yet systemic treatment is limited to DNA-alkylating chemotherapies. New therapeutic strategies may emerge from exploring neurodevelopmental and neurophysiological vulnerabilities of glioblastoma. To this end, we systematically screened repurposable neuroactive drugs in glioblastoma patient surgery material using a clinically concordant and single-cell resolved platform. Profiling more than 2,500 ex vivo drug responses across 27 patients and 132 drugs identified class-diverse neuroactive drugs with potent anti-glioblastoma efficacy that were validated across model systems. Interpretable molecular machine learning of drug–target networks revealed neuroactive convergence on AP-1/BTG-driven glioblastoma suppression, enabling expanded in silico screening of more than 1 million compounds with high patient validation accuracy. Deep multimodal profiling confirmed Ca 2+ -driven AP-1/BTG-pathway induction as a neuro-oncological glioblastoma vulnerability, epitomized by the anti-depressant vortioxetine synergizing with current standard-of-care chemotherapies in vivo. These findings establish an actionable framework for glioblastoma treatment rooted in its neural etiology. A single-cell ex vivo screening of repurposable drugs in glioblastoma and machine learning of drug–target networks show that anti-tumor neuroactive drugs converge on the AP-1/BTG pathway, based on which prediction models and experimental in vivo and in silico validation identify the anti-depressant vortioxetine as a potential therapeutic agent.
ISSN:1078-8956
1546-170X
1546-170X
DOI:10.1038/s41591-024-03224-y