Hard carbon from a sugar derivative for next-generation sodium-ion batteries

Sodium-ion batteries have emerged as a promising secondary battery system due to the abundance of sodium resources. One of the boosters for accelerating the practical application of sodium-ion batteries is the innovation in anode materials. This study focuses on developing a high-performance hard ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2024-11
Hauptverfasser: Eren, Enis Oğuzhan, Senokos, Evgeny, Song, Zihan, Mondal, Brinti, Perju, Audrey, Horner, Tim, Yılmaz, Elif Begüm, Scoppola, Ernesto, Taberna, Pierre-Louis, Simon, Patrice, Antonietti, Markus, Giusto, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sodium-ion batteries have emerged as a promising secondary battery system due to the abundance of sodium resources. One of the boosters for accelerating the practical application of sodium-ion batteries is the innovation in anode materials. This study focuses on developing a high-performance hard carbon anode material derived from hydroxymethylfurfural, produced from carbohydrates, using a straightforward thermal condensation method. The process results in a unique pseudo-graphitic material with abundant microporosity. Electrochemical evaluations demonstrate excellent sodium storage performance by maintaining the plateau capacity even at higher current densities. This translates to a promising energy density when coupled with the cathode material. However, we also discuss the influence of electrolyte composition on the performance of the hydroxymethylfurfural-derived hard carbon, emphasizing the critical role of electrolyte optimization for the development of efficient and sustainable carbonaceous anode materials for next-generation sodium-based batteries.
ISSN:2051-6347
2051-6355
2051-6355
DOI:10.1039/d4mh01118j