Improvements in Injection Moulds Cooling and Manufacturing Efficiency Achieved by Wire Arc Additive Manufacturing Using Conformal Cooling Concept

The plastic injection moulding industry is a constantly developing industrial field. This industrial process requires the manufacturing of metal moulds using complex heating and cooling systems. The purpose of this research is to optimize both the plastic injection moulding process and the mould man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-10, Vol.16 (21), p.3057
Hauptverfasser: Marqués, Alejandro, Dieste, Jose Antonio, Monzón, Iván, Laguía, Alberto, Gracia, Pascual, Javierre, Carlos, Clavería, Isabel, Elduque, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The plastic injection moulding industry is a constantly developing industrial field. This industrial process requires the manufacturing of metal moulds using complex heating and cooling systems. The purpose of this research is to optimize both the plastic injection moulding process and the mould manufacturing process itself by combining practices in this industry with current additive manufacturing technologies, specifically Wire Arc Additive Manufacturing (WAAM) technology. A mould punch was manufactured by using both WAAM technology, whose internal cooling system has been designed under the concept of Conformal Cooling, and conventional cooling channel designs and manufacturing techniques in order to carry out a comparative analysis. Theoretical results obtained by CAE methods showed an improvement in heat extraction in the WAAM mould. In addition, the WAAM mould was able to achieve better temperature homogeneity in the final part, minimizing deformations in the final part after extraction. Finally, the WAAM manufacturing process was proven to be more efficient in terms of material consumption than the conventional mould, reducing the buy-to-fly ratio of the part by 5.11.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16213057