Identification of a Novel Biomarker Panel for Breast Cancer Screening
Breast cancer remains a major public health concern, and early detection is crucial for improving survival rates. Metabolomics offers the potential to develop non-invasive screening and diagnostic tools based on metabolic biomarkers. However, the inherent complexity of metabolomic datasets and the h...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-11, Vol.25 (21), p.11835 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer remains a major public health concern, and early detection is crucial for improving survival rates. Metabolomics offers the potential to develop non-invasive screening and diagnostic tools based on metabolic biomarkers. However, the inherent complexity of metabolomic datasets and the high dimensionality of biomarkers complicates the identification of diagnostically relevant features, with multiple studies demonstrating limited consensus on the specific metabolites involved. Unlike previous studies that rely on singular feature selection techniques such as Partial Least Square (PLS) or LASSO regression, this research combines supervised and unsupervised machine learning methods with random sampling strategies, offering a more robust and interpretable approach to feature selection. This study aimed to identify a parsimonious and robust set of biomarkers for breast cancer diagnosis using metabolomics data. Plasma samples from 185 breast cancer patients and 53 controls (from the Cooperative Human Tissue Network, USA) were analyzed. This study also overcomes the common issue of dataset imbalance by using propensity score matching (PSM), which ensures reliable comparisons between cancer and control groups. We employed Univariate Naïve Bayes, L2-regularized Support Vector Classifier (SVC), Principal Component Analysis (PCA), and feature engineering techniques to refine and select the most informative features. Our best-performing feature set comprised 11 biomarkers, including 9 metabolites (SM(OH) C22:2, SM C18:0, C0, C3OH, C14:2OH, C16:2OH, LysoPC a C18:1, PC aa C36:0 and Asparagine), a metabolite ratio (Kynurenine-to-Tryptophan), and 1 demographic variable (Age), achieving an area under the ROC curve (AUC) of 98%. These results demonstrate the potential for a robust, cost-effective, and non-invasive breast cancer screening and diagnostic tool, offering significant clinical value for early detection and personalized patient management. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms252111835 |