Custom microfluidic chip design enables cost-effective three-dimensional spatiotemporal transcriptomics with a wide field of view

Spatial transcriptomic techniques offer unprecedented insights into the molecular organization of complex tissues. However, integrating cost-effectiveness, high throughput, a wide field of view and compatibility with three-dimensional (3D) volumes has been challenging. Here we introduce microfluidic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2024-10, Vol.56 (10), p.2259-2270
Hauptverfasser: Zhu, Junjie, Pang, Kun, Hu, Beiyu, He, Ruiqiao, Wang, Ning, Jiang, Zewen, Ji, Peifeng, Zhao, Fangqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatial transcriptomic techniques offer unprecedented insights into the molecular organization of complex tissues. However, integrating cost-effectiveness, high throughput, a wide field of view and compatibility with three-dimensional (3D) volumes has been challenging. Here we introduce microfluidics-assisted grid chips for spatial transcriptome sequencing (MAGIC-seq), a new method that combines carbodiimide chemistry, spatial combinatorial indexing and innovative microfluidics design. This technique allows sensitive and reproducible profiling of diverse tissue types, achieving an eightfold increase in throughput, minimal cost and reduced batch effects. MAGIC-seq breaks conventional microfluidics limits by enhancing barcoding efficiency and enables analysis of whole postnatal mouse sections, providing comprehensive cellular structure elucidation at near single-cell resolution, uncovering transcriptional variations and dynamic trajectories of mouse organogenesis. Our 3D transcriptomic atlas of the developing mouse brain, consisting of 93 sections, reveals the molecular and cellular landscape, serving as a valuable resource for neuroscience and developmental biology. Overall, MAGIC-seq is a high-throughput, cost-effective, large field of view and versatile method for spatial transcriptomic studies. Microfluidics-assisted grid chips for spatial transcriptome sequencing (MAGIC-seq) is a spatial transcriptomics method combining multiple-grid microfluidic design and prefabricated DNA arrays for increased throughput and reduced cost, with applications for large fields of view and 3D spatial mapping.
ISSN:1061-4036
1546-1718
1546-1718
DOI:10.1038/s41588-024-01906-4