Exploring the Low-Dose Limit for Focal Hepatic Lesion Detection with a Deep Learning-Based CT Reconstruction Algorithm: A Simulation Study on Patient Images
This study aims to investigate the maximum achievable dose reduction for applying a new deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in computed tomography (CT) for hepatic lesion detection. A total of 40 patients with 98 clinicall...
Gespeichert in:
Veröffentlicht in: | Journal of digital imaging 2024-10, Vol.37 (5), p.2089-2098 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims to investigate the maximum achievable dose reduction for applying a new deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in computed tomography (CT) for hepatic lesion detection. A total of 40 patients with 98 clinically confirmed hepatic lesions were retrospectively included. The mean volume CT dose index was 13.66 ± 1.73 mGy in routine-dose portal venous CT examinations, where the images were originally obtained with hybrid iterative reconstruction (HIR). Low-dose simulations were performed in projection domain for 40%-, 20%-, and 10%-dose levels, followed by reconstruction using both HIR and AIIR. Two radiologists were asked to detect hepatic lesion on each set of low-dose image in separate sessions. Qualitative metrics including lesion conspicuity, diagnostic confidence, and overall image quality were evaluated using a 5-point scale. The contrast-to-noise ratio (CNR) for lesion was also calculated for quantitative assessment. The lesion CNR on AIIR at reduced doses were significantly higher than that on routine-dose HIR (all p |
---|---|
ISSN: | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X |
DOI: | 10.1007/s10278-024-01080-3 |