Thermal Decomposition of 2‑Cyclopentenone
The thermal decomposition of 2-cyclopentenone, a cyclic oxygenated hydrocarbon that occurs in the pyrolysis of biomass, has been studied in a combined experimental and theoretical approach. Gas-phase pyrolysis was performed at temperatures ranging from 1000 to 1400 K in a pulsed, microtubular reacto...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-10, Vol.128 (42), p.9226-9234 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermal decomposition of 2-cyclopentenone, a cyclic oxygenated hydrocarbon that occurs in the pyrolysis of biomass, has been studied in a combined experimental and theoretical approach. Gas-phase pyrolysis was performed at temperatures ranging from 1000 to 1400 K in a pulsed, microtubular reactor. Products were identified by FTIR spectroscopy following their isolation in a low-temperature argon matrix. The following products were identified: carbon monoxide, ketene, propenylketene, vinylacetylene, ethylene, propene, acrolein, acetylene, propyne, and propargyl radical. Computational results identify three different decomposition channels involving a H atom migration, and producing prop-2-enylketene (Pathway 1), prop-1-enylketene (Pathway 2), and a second conformation of prop-2-enylketene (Pathway 3). A fourth decomposition pathway involves simultaneous rupture of two C–C bonds forming a high energy cyclopropenone intermediate that further reacts to form ethylene, acetylene, and carbon monoxide. Finally, a fifth pathway to the formation of acrolein and acetylene was identified that proceeds via a multistep mechanism, and an interconversion from 2-cyclopentenone to 3-cyclopentenone was identified computationally, but not observed experimentally. |
---|---|
ISSN: | 1089-5639 1520-5215 1520-5215 |
DOI: | 10.1021/acs.jpca.4c05532 |