Synthesis, Cytotoxicity, and Mechanistic Evaluation of Tetrahydrocurcumin-Amino Acid Conjugates as LAT1-Targeting Anticancer Agents in C6 Glioma Cells
Glioblastoma, a fatal brain cancer with limited treatments and poor prognosis, could benefit from targeting the L-type amino acid transporter I (LAT1). LAT1 is essential for cancer cells to acquire necessary amino acids. Tetrahydrocurcumin (THC), a key curcumin derivative, shows potential for gliobl...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-10, Vol.25 (20), p.11266 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glioblastoma, a fatal brain cancer with limited treatments and poor prognosis, could benefit from targeting the L-type amino acid transporter I (LAT1). LAT1 is essential for cancer cells to acquire necessary amino acids. Tetrahydrocurcumin (THC), a key curcumin derivative, shows potential for glioblastoma treatment. However, its effectiveness is hindered by poor physicochemical and pharmacokinetic properties. Therefore, this study aims to improve the therapeutic efficacy of THC against glioblastoma by chemically modifying it to target LAT1. A novel series of THC-amino acid conjugates were synthesized by conjugating five amino acids: glycine, leucine, isoleucine, and phenylalanine to THC via carbamate bonds. The therapeutic efficacy of THC-amino acid conjugates was further examined in C6 glioma cells, including the role of LAT1 in their therapeutic effects. Among the conjugates tested, THC conjugated with two phenylalanines (THC-di-Phe) showed remarkably higher cytotoxicity against C6 glioma cells (35.8 μM) compared to THC alone (110.7 μM). THC-di-Phe induced cellular death via necrosis and apoptosis, outperforming THC. Additionally, THC-di-Phe inhibited C6 cell proliferation and migration more effectively than THC. Co-incubation of THC-di-Phe with the LAT1 inhibitor 2-Aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) further increased cellular death. THC-di-Phe also significantly inhibited the P70SK/S6 pathway, regulated by LAT1 inhibitors, more effectively than THC and displayed a similar binding mode with both JX-075 and BCH to the active site of LAT1. Findings suggest the potential role of THC-di-Phe as a LAT1 inhibitor and provide novel insight into its use as a potent antitumor agent in glioma with increased therapeutic efficacy. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms252011266 |