TRIM47 promotes the Warburg effect and reduces ferroptosis in prostate cancer by FBP1 and FOXO1
Prostate cancer (PC), a malignant tumor occurring in the male prostate tissue, has a high incidence rate. In this study, we explored the role of tripartite motif 47 (TRIM47) in the progression of PC and its underlying mechanism. PC and paracancerous tissues were collected from Shenzhen Peoples'...
Gespeichert in:
Veröffentlicht in: | Translational andrology and urology 2024-09, Vol.13 (9), p.1991-2004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prostate cancer (PC), a malignant tumor occurring in the male prostate tissue, has a high incidence rate. In this study, we explored the role of tripartite motif 47 (TRIM47) in the progression of PC and its underlying mechanism.
PC and paracancerous tissues were collected from Shenzhen Peoples's Hospital. The following methods were employed in this experiment: quantitative polymerase chain reaction (qPCR), immunofluorescent staining, cell counting kit-8 (CCK-8), ethynyl deoxyuridine (EdU), and Western blot.
The expression levels of TRIM47 were up-regulated in patients with PC. TRIM47 was found to promote cell growth and induce the Warburg effect, while also reducing ferroptosis in PC cells. Conversely, the knockdown of TRIM47 [small interfering RNA, (si)-TRIM47] decreased cell growth and the Warburg effect, while promoting ferroptosis in PC cells. Additionally, TRIM47 was observed to induce the protein expression levels of fructose-1,6-bisphosphatase 1 (FBP1) and forkhead box protein O1 (FOXO1) in PC cells. Further, TRIM47 protein was found to interact with both the FBP1 and FOXO1 proteins in the PC cells. The inhibition of FBP1 attenuated the effects of TRIM47 on the Warburg effect in PC cells, while the inhibition of FOXO1 diminished the effects of TRIM47 on ferroptosis in PC cells.
Our findings suggest that TRIM47 promotes the Warburg effect of PC by inducing FBP1 and FOXO1. Thus, our findings suggest that targeting TRIM47 could serve as a viable therapeutic strategy for the treatment of PC. |
---|---|
ISSN: | 2223-4691 2223-4683 2223-4691 |
DOI: | 10.21037/tau-23-605 |