Microwave-Assisted Hydrothermal Synthesis of Photocatalytic Truncated-Bipyramidal TiO2/Ti3CN Heterostructures Derived from Ti3CN MXene

TiO2/MXene heterostructure has garnered significant interest as a photocatalyst due to its large surface area and efficient charge carrier separation at the interface. However, current synthesis methods produce TiO2 without clear crystal faceting and often require complicated postprocessing step, li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-10, Vol.40 (41), p.21547-21558
Hauptverfasser: Purbayanto, Muhammad Abiyyu Kenichi, Chandel, Madhurya, Bury, Dominika, Wójcik, Anna, Moszczyńska, Dorota, Tabassum, Anika, Mochalin, Vadym N., Naguib, Michael, Jastrzębska, Agnieszka Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TiO2/MXene heterostructure has garnered significant interest as a photocatalyst due to its large surface area and efficient charge carrier separation at the interface. However, current synthesis methods produce TiO2 without clear crystal faceting and often require complicated postprocessing step, limiting its practical applications. We demonstrate a facile and controlled microwave-assisted hydrothermal synthesis for transforming multilayered Ti3CN MXene to a truncated-bipyramidal TiO2/Ti3CN heterostructure. The resulting TiO2 nanocrystals at the Ti3CN surface exhibited crystalline anatase truncated bipyramids, exposing {001} and {101} facets. We further tailored an indirect optical band gap of the TiO2/Ti3CN heterostructure in the range of 3.17–3.23 eV by varying the hydrothermal synthesis time from 15 min to 5 h at a fixed temperature of 160 °C. Efficient charge separation allowed us to decompose 97% of methylene blue (MB) within 30 min of ultraviolet (UV) light irradiation, ∼3.9-fold faster than the benchmark P25, higher than any other TiO2/MXene heterostructures. With simulated white light, we achieved over 60% efficiency of the dye decomposition within 2 h of irradiation, which resulted in 1.5-fold faster kinetics than P25. We also observed a similar excellent performance of Ti3CN-derived TiO2 in decomposing various persistent synthetic dyes, including commercial textile dye, methyl orange, and rhodamine B. In conclusion, our study provides a strategy for utilizing MXene chemical reactivity to produce highly crystalline optically active TiO2/Ti3CN heterostructure. The developed heterostructure can serve as an efficient photocatalyst for the degradation of organic pollutants.
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/acs.langmuir.4c02444