Role of Structural and Compositional Changes of Cu2O Nanocubes in Nitrate Electroreduction to Ammonia
Nitrate electroreduction reaction (NO3RR) to ammonia (NH3) still faces fundamental and technological challenges. While Cu-based catalysts have been widely explored, their activity and stability relationship are still not fully understood. Here, we systematically monitored the dynamic alterations in...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2024-10, Vol.7 (19), p.9034-9044 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitrate electroreduction reaction (NO3RR) to ammonia (NH3) still faces fundamental and technological challenges. While Cu-based catalysts have been widely explored, their activity and stability relationship are still not fully understood. Here, we systematically monitored the dynamic alterations in the chemical and morphological characteristics of Cu2O nanocubes (NCs) during NO3RR in an alkaline electrolyte. In 1 h of electrolysis from −0.10 to −0.60 V vs RHE, the electrocatalyst achieved the maximum NH3 faradaic efficiency (FE) and yield rate at −0.3 V (94% and 149 μmol h–1 cm–2, respectively). Similar efficiency could be found at a lower overpotential (−0.20 V vs RHE) in long-term electrolysis. At −0.20 V vs RHE, the catalyst FE increased from 73% in the first 2 h to ∼90% in 10 h of electrolysis. Electron microscopy revealed the loss of the cubic shape with the formation of sintered domains. In situ Raman, X-ray diffraction (XRD), and in situ Cu K-edge X-ray absorption near-edge spectroscopy (XANES) indicated the reduction of Cu2O to oxide-derived Cu0 (OD-Cu). Nevertheless, a remaining Cu2O phase was noticed after 1 h of electrolysis at −0.3 V vs RHE. This observation indicates that the activity and selectivity of the initially well-defined Cu2O NCs are not solely dependent on the initial structure. Instead, it underscores the emergence of an OD-Cu-rich surface, evolving from near-surface to underlying layers over time and playing a crucial role in the reaction pathways. By employing online differential electrochemical mass spectrometry (DEMS) and in situ Fourier transform infrared spectroscopy (FTIR), we experimentally probed the presence of key intermediates (NO and NH2OH) and byproducts of NO3RR (N2 and N2H x ) for NH3 formation. These results show a complex relationship between activity and stability of the nanostructured Cu2O oxide catalyst for NO3RR. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.4c02326 |