A Thermosensitive and Degradable Chitin-Based Hydrogel as a Brucellosis Vaccine Adjuvant

Brucellosis is a zoonotic infectious disease that has long endangered the development of animal husbandry and human health. Currently, vaccination stands as the most efficacious method for preventing and managing brucellosis. Alum, as the most commonly used adjuvant for the brucellosis vaccine, has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-10, Vol.16 (19), p.2815
Hauptverfasser: Ju, Ruibao, Lu, Yanjing, Jiang, Zhiwen, Chi, Jinhua, Wang, Shuo, Liu, Wanshun, Yin, Yanbo, Han, Baoqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brucellosis is a zoonotic infectious disease that has long endangered the development of animal husbandry and human health. Currently, vaccination stands as the most efficacious method for preventing and managing brucellosis. Alum, as the most commonly used adjuvant for the brucellosis vaccine, has obvious disadvantages, such as the formation of granulomas and its non-degradability. Therefore, the aims of this study were to prepare an absorbable, injectable, and biocompatible hydroxypropyl chitin (HPCT) thermosensitive hydrogel and to evaluate its immunization efficacy as an adjuvant for Brucella antigens. Specifically, etherification modification of marine natural polysaccharide chitin was carried out to obtain a hydroxypropyl chitin. Rheological studies demonstrated the reversible temperature sensitivity of HPCT hydrogel. Notably, 5 mg/mL of bovine serum albumin can be loaded in HPCT hydrogels and released continuously for more than one week. Furthermore, the L929 cytotoxicity test and in vivo degradation test in rats proved that an HPCT hydrogel had good cytocompatibility and histocompatibility and can be degraded and absorbed in vivo. In mouse functional experiments, as adjuvants for Brucella antigens, an HPCT hydrogel showed better specific antibody expression levels and cytokine (Interleukin-4, Interferon-γ) expression levels than alum. Thus, we believe that HPCT hydrogels hold much promise in the development of adjuvants.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16192815