Mechanical Performance of Cellulose Nanocrystal and Bioceramic-Based Composites for Surgical Training

This study evaluated the mechanical performance of a cellulose nanocrystal (CNC)-based composite, consisting of hydroxyapatite and natural fibers, mimicking the mechanical properties of real bone. The effect of natural nanofibers on the cutting force of the composite was evaluated for suitability in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-10, Vol.16 (19), p.2849
Hauptverfasser: Jeon, Hee-Chang, Kim, Young-Seong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study evaluated the mechanical performance of a cellulose nanocrystal (CNC)-based composite, consisting of hydroxyapatite and natural fibers, mimicking the mechanical properties of real bone. The effect of natural nanofibers on the cutting force of the composite was evaluated for suitability in surgical training. Although hydroxyapatite has been extensively studied in bone-related applications, the exploration of epoxy-based composites incorporating both hydroxyapatite and CNC represents a novel approach. The evaluation involved a load cell with an oscillating saw. The uniform distribution of CNCs within the composite was assessed using 3D X-ray imaging. The cutting force was found to be 4.005 ± 0.5469 N at a feed rate of 0.5 mm/s, comparable to that required when cutting real bone with the osteon at 90°. The 90-degree orientation of the osteon aligns with the cutting direction of the oscillating saw when performing knee replacements on the tibia and femur bones. The addition of CNCs resulted in changes in fracture toughness, leading to increased material fragmentation and surface irregularities. Furthermore, the change in the cutting force with depth was similar to that of real bone. The developed composite material enables bone-cutting surgeries using bioceramics and natural fibers without the risks associated with cadavers or synthetic fibers. Mold-based computed tomography data allows for the creation of various bone forms, enhancing skill development for surgeons.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16192849