Retinal perivascular macrophages regulate immune cell infiltration during neuroinflammation in mouse models of ocular disease

The blood-retina barrier (BRB), which is disrupted in diabetic retinopathy (DR) and uveitis, is an important anatomical characteristic of the retina, regulating nutrient, waste, water, protein, and immune cell flux. The BRB is composed of endothelial cell tight junctions, pericytes, astrocyte end fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2024-10, Vol.134 (20), p.1-13
Hauptverfasser: Sterling, Jacob K, Rajesh, Amrita, Droho, Steven, Gong, Joyce, Wang, Andrew L, Voigt, Andrew P, Brookins, C Elysse, Lavine, Jeremy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The blood-retina barrier (BRB), which is disrupted in diabetic retinopathy (DR) and uveitis, is an important anatomical characteristic of the retina, regulating nutrient, waste, water, protein, and immune cell flux. The BRB is composed of endothelial cell tight junctions, pericytes, astrocyte end feet, a collagen basement membrane, and perivascular macrophages. Despite the importance of the BRB, retinal perivascular macrophage function remains unknown. We found that retinal perivascular macrophages reside on post-capillary venules in the superficial vascular plexus and express MHCII. Using single-cell RNA-sequencing, we found that perivascular macrophages express a pro-chemotactic transcriptome and identified Pf4/CXCL4 as a perivascular macrophage marker. We used Pf4Cre mice to specifically deplete perivascular macrophages. To model retinal inflammation, we performed intraocular CCL2 injections. Ly6C+ monocytes crossed the BRB proximal to perivascular macrophages. Depletion of perivascular macrophages severely hampered Ly6C+ monocyte infiltration. These data suggest that retinal perivascular macrophages orchestrate immune cell migration across the BRB, with implications for inflammatory ocular diseases including DR and uveitis.
ISSN:1558-8238
0021-9738
1558-8238
DOI:10.1172/JCI180904