Optically Active, Paper-Based Scaffolds for 3D Cardiac Pacing
In this work, we report the design and fabrication of a light-addressable, paper-based nanocomposite scaffold for optical pacing and read-out of in vitro grown cardiac tissue. The scaffold consists of paper cellulose microfibers functionalized with gold nanorods (GNRs) and semiconductor quantum dots...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-10, Vol.16 (40), p.53449-53459 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we report the design and fabrication of a light-addressable, paper-based nanocomposite scaffold for optical pacing and read-out of in vitro grown cardiac tissue. The scaffold consists of paper cellulose microfibers functionalized with gold nanorods (GNRs) and semiconductor quantum dots (QDs), embedded in a cell-permissive collagen matrix. The GNRs enable cardiomyocyte activity modulation through local temperature gradients induced by modulated near-infrared (NIR) laser illumination, with the local temperature changes reported by temperature-dependent QD photoluminescence (PL). The micrometer-sized paper fibers promote the tubular organization of HL-1 cardiac muscle cells, while the NIR plasmonic stimulation modulates reversibly their activity. Given the nanoscale spatial resolution and facile fabrication, paper-based nanocomposite scaffolds with NIR modulation offer excellent alternatives to electrode-based or optogenetic methods for cell activity modulation, at the single cell level, and are compatible with 3D tissue constructs. Such paper-based optical platforms can provide new possibilities for the development of in vitro drug screening assays and heart disease modeling. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c10183 |