Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration

The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2023-05, Vol.12 (12), p.e2202658-n/a
Hauptverfasser: Tang, Yu, Xu, Zonghan, Tang, Jincheng, Xu, Yichang, Li, Ziang, Wang, Wenbo, Wu, Liang, Xi, Kun, Gu, Yong, Chen, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel “perfusion” system and electrospinning technology are integrated, and a “concrete” composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti‐inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell‐derived factor‐1α and brain‐derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four‐ and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI. A hydrogel “perfusion” system and electrospinning technology constitute a “concrete” composite support for the repair of nerve injuries. This engineering fiber composite improves the local inflammatory response and promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial.
ISSN:2192-2640
2192-2659
2192-2659
DOI:10.1002/adhm.202202658