Reproductive Ageing: Declining translational capacity as a potential driver for oocyte meiotic instability

This point of view article focuses on the potential contribution of defects in protein synthesis (translation) to the incidence of oocyte meiotic failure. We discuss the potential cause of diminished oocyte translation during aging and the impact of these deficits on the function of the meiotic spin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reproduction (Cambridge, England) England), 2024-11, Vol.168 (5)
Hauptverfasser: Danielson, Katie J, Judson, Kayla L, Greenblatt, Ethan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This point of view article focuses on the potential contribution of defects in protein synthesis (translation) to the incidence of oocyte meiotic failure. We discuss the potential cause of diminished oocyte translation during aging and the impact of these deficits on the function of the meiotic spindle.In BriefThis point of view article focuses on the potential contribution of defects in protein synthesis (translation) to the incidence of oocyte meiotic failure. We discuss the potential cause of diminished oocyte translation during aging and the impact of these deficits on the function of the meiotic spindle.Errors during female meiosis lead to embryonic aneuploidy and miscarriage and occur with increasing frequency during aging. The underlying molecular changes that drive female meiotic instability remain a subject of debate. Developing oocytes undergo a tremendous increase in cytoplasmic volume over several months of follicle development and rely on long-lived mRNAs and ribosomes accumulated during this growth phase for subsequent meiotic maturation. In this point of view article, we discuss how the unique reliance on stores of long-lived mRNAs and ribosomes may represent an Achilles' heel for oocyte function and how alterations that reduce the translational capacity of oocytes could be a factor significantly contributing to female infertility. Understanding these mechanisms could lead to new therapeutic strategies to improve fertility outcomes.AbstractErrors during female meiosis lead to embryonic aneuploidy and miscarriage and occur with increasing frequency during aging. The underlying molecular changes that drive female meiotic instability remain a subject of debate. Developing oocytes undergo a tremendous increase in cytoplasmic volume over several months of follicle development and rely on long-lived mRNAs and ribosomes accumulated during this growth phase for subsequent meiotic maturation. In this point of view article, we discuss how the unique reliance on stores of long-lived mRNAs and ribosomes may represent an Achilles' heel for oocyte function and how alterations that reduce the translational capacity of oocytes could be a factor significantly contributing to female infertility. Understanding these mechanisms could lead to new therapeutic strategies to improve fertility outcomes.
ISSN:1470-1626
1741-7899
1741-7899
DOI:10.1530/REP-24-0198