Peritoneal pre-conditioning impacts long-term vascular graft patency and remodeling
There are questions about how well small-animal models for tissue-engineered vascular grafts (TEVGs) translate to clinical patients. Most TEVG studies used grafting times ≤6 months where conduits from generally biocompatible materials like poly(ε-caprolactone) (PCL) perform well. However, longer gra...
Gespeichert in:
Veröffentlicht in: | Biomaterials advances 2023-05, Vol.148, p.213386-213386, Article 213386 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are questions about how well small-animal models for tissue-engineered vascular grafts (TEVGs) translate to clinical patients. Most TEVG studies used grafting times ≤6 months where conduits from generally biocompatible materials like poly(ε-caprolactone) (PCL) perform well. However, longer grafting times can result in significant intimal hyperplasia and calcification. This study tests the hypothesis that differences in pro-inflammatory response from pure PCL conduits will be consequential after long-term grafting. It also tests the long-term benefits of a peritoneal pre-implantation strategy on rodent outcomes. Electrospun conduits with and without peritoneal pre-implantation, and with 0 % and 10 % (w/w) collagen/PCL, were grafted into abdominal aortae of rats for 10 months. This study found that viability of control grafts without pre-implantation was reduced unlike prior studies with shorter grafting times, confirming the relevance of this model. Importantly, pre-implanted grafts had a 100 % patency rate. Further, pre-implantation reduced intimal hyperplasia within the graft. Differences in response between pure PCL and collagen/PCL conduits were observed (e.g., fewer CD80
and CD3
cells for collagen/PCL), but only pre-implantation had an effect on the overall graft viability. This study demonstrates how long-term grafting in rodent models can better evaluate viability of different TEVGs, and the benefits of the peritoneal pre-implantation step. |
---|---|
ISSN: | 2772-9508 2772-9516 2772-9508 |
DOI: | 10.1016/j.bioadv.2023.213386 |