The neural dynamics associated with computational complexity
Many everyday tasks require people to solve computationally complex problems. However, little is known about the effects of computational hardness on the neural processes associated with solving such problems. Here, we draw on computational complexity theory to address this issue. We performed an ex...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2024-09, Vol.20 (9), p.e1012447 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many everyday tasks require people to solve computationally complex problems. However, little is known about the effects of computational hardness on the neural processes associated with solving such problems. Here, we draw on computational complexity theory to address this issue. We performed an experiment in which participants solved several instances of the 0-1 knapsack problem, a combinatorial optimization problem, while undergoing ultra-high field (7T) functional magnetic resonance imaging (fMRI). Instances varied in computational hardness. We characterize a network of brain regions whose activation was correlated with computational complexity, including the anterior insula, dorsal anterior cingulate cortex and the intra-parietal sulcus/angular gyrus. Activation and connectivity changed dynamically as a function of complexity, in line with theoretical computational requirements. Overall, our results suggest that computational complexity theory provides a suitable framework to study the effects of computational hardness on the neural processes associated with solving complex cognitive tasks. |
---|---|
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1012447 |