Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants

Bioelectronic implants featuring soft mechanics, excellent biocompatibility, and outstanding electrical performance hold promising potential to revolutionize implantable technology. These biomedical implants can record electrophysiological signals and execute direct therapeutic interventions within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-10, Vol.10 (40), p.eadp8866
Hauptverfasser: Wu, Yizhang, Li, Yuan, Liu, Yihan, Zhu, Dashuai, Xing, Sicheng, Lambert, Noah, Weisbecker, Hannah, Liu, Siyuan, Davis, Brayden, Zhang, Lin, Wang, Meixiang, Yuan, Gongkai, You, Chris Zhoufan, Zhang, Anran, Duncan, Cate, Xie, Wanrong, Wang, Yihang, Wang, Yong, Kanamurlapudi, Sreya, Evert, Garcia-Guzman, Putcha, Arjun, Dickey, Michael D, Huang, Ke, Bai, Wubin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioelectronic implants featuring soft mechanics, excellent biocompatibility, and outstanding electrical performance hold promising potential to revolutionize implantable technology. These biomedical implants can record electrophysiological signals and execute direct therapeutic interventions within internal organs, offering transformative potential in the diagnosis, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive two dimensionally layered material, which we refer to as OBXene), which exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. We report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adp8866