Maximizing Nanoscale Downshifting Energy Transfer in a Metallosupramolecular Cr(III)–Er(III) Assembly
Pseudo-octahedral CrIIIN6 chromophores hold a unique appeal for low-energy sensitization of NIR lanthanide luminescence due to their exceptionally long-lived spin-flip excited states. This allure persists despite the obstacles and complexities involved in integrating both elements into a metallosupr...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2024-09, Vol.63 (39), p.18345-18354 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pseudo-octahedral CrIIIN6 chromophores hold a unique appeal for low-energy sensitization of NIR lanthanide luminescence due to their exceptionally long-lived spin-flip excited states. This allure persists despite the obstacles and complexities involved in integrating both elements into a metallosupramolecular assembly. In this work, we have designed a structurally optimized heteroleptic CrIII building block capable of binding rare earths. Following a complex-as-ligand synthetic strategy, two heterometallic supramolecular assemblies, in which three peripherical CrIII sensitizers coordinated through a molecular wire to a central ErIII or YIII, have been prepared. Upon excitation of the CrIII spin-flip states, the downshifted Er(4I13/2 → 4I15/2) emission at 1550 nm was induced through intramolecular energy transfer. Time-resolved experiments at room temperature reveal a CrIII → ErIII energy transfer of 62–73% efficiencies with rate constants of about 8.5 × 105 s–1 despite the long donor–acceptor distance (circa 14 Å). This efficient directional intermetallic energy transfer can be rationalized using the Dexter formalism, which is promoted by a rigid linear electron-rich alkyne bridge that acts as a molecular wire connecting the CrIII and ErIII ions. |
---|---|
ISSN: | 0020-1669 1520-510X 1520-510X |
DOI: | 10.1021/acs.inorgchem.4c02397 |