Dysbiosis of gut microbiota is associated with pathogenesis of peptic ulcer diseases through inflammatory proteins: A Mendelian randomization study
The gut microbiota and inflammatory proteins may affect the development of peptic ulcer disease. However, this association remains unclear. We analyzed genome-wide association study data of gut microbiota, inflammatory proteins, and peptic ulcer disease using Mendelian randomization with instrumenta...
Gespeichert in:
Veröffentlicht in: | Medicine (Baltimore) 2024-09, Vol.103 (39), p.e39814 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gut microbiota and inflammatory proteins may affect the development of peptic ulcer disease. However, this association remains unclear. We analyzed genome-wide association study data of gut microbiota, inflammatory proteins, and peptic ulcer disease using Mendelian randomization with instrumental variables to assess causal relationships. Various statistical methods, including inverse variance weighting, Mendelian randomization Egger regression, and sensitivity analysis were employed to evaluate the data and calculate mediation ratios. Our findings reveal that the genus Butyriciccus plays a role in mitigating the adverse effects of gastric ulcers by 7.9%, primarily through reducing beta-negative growth factor levels. Additionally, the genus Lachnospiraceae UCG004 can significantly alleviate the negative outcomes of gastric ulcers and reduces hepatocyte growth factor and beta-reserve growth factor levels by 6.39% and 7.45%, respectively. This study highlights the independent and mediating effects of the gut microbiota and inflammatory proteins on peptic ulcers, offering insights on potential pathways and targets for future preventive interventions. |
---|---|
ISSN: | 1536-5964 0025-7974 1536-5964 |
DOI: | 10.1097/MD.0000000000039814 |