Influence of Immersion Orientation on Microstructural Evolution and Deformation Behavior of 40Cr Steel Automobile Front Axle during Oil Quenching
This study employs the finite element method to investigate the microstructural evolution and deformation behavior of a 40Cr steel automobile front axle during the quenching process. By establishing a multi-physics field coupling model, the study elucidates the variation patterns of the microstructu...
Gespeichert in:
Veröffentlicht in: | Materials 2024-09, Vol.17 (18), p.4654 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study employs the finite element method to investigate the microstructural evolution and deformation behavior of a 40Cr steel automobile front axle during the quenching process. By establishing a multi-physics field coupling model, the study elucidates the variation patterns of the microstructure field in the quenching process of the front axle under different immersion orientations. It is found that along the length direction, the bainite and martensite structures decrease from the center to the edge region, while the ferrite structure shows an increasing trend. Additionally, the influence of immersion orientation on the hardness of the front axle's microstructure and deformation behavior is thoroughly discussed. The results indicate that, firstly, when quenched horizontally, the hardness difference among different regions of the front axle is approximately 8.2 HRC, whereas it reaches 10.3 HRC when quenched vertically. Considering the uniformity of the microstructure, the horizontal immersion method is preferable. Secondly, due to the different immersion sequences in different regions of the front axle leading to varying heat transfer rates, as well as the different amounts of martensite structures obtained in different regions, the deformation decreases along the length direction from the center to the edge region. Horizontal immersion quenching, compared to vertical immersion, results in a reduction of approximately 56.2% and 48.9% in deformation on the representative central cross-section (A-A) and the total length of the front axle, respectively. Therefore, considering aspects such as microstructure uniformity and deformation, the horizontal immersion quenching orientation is more favorable. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17184654 |