Prediction of Cancer Proneness under Influence of X-rays with Four DNA Mutability and/or Three Cellular Proliferation Assays

Although carcinogenesis is a multi-factorial process, the mutability and the capacity of cells to proliferate are among the major features of the cells that contribute together to the initiation and promotion steps of cancer formation. Particularly, mutability can be quantified by hyper-recombinatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2024-09, Vol.16 (18), p.3188
Hauptverfasser: El Nachef, Laura, Bodgi, Larry, Estavoyer, Maxime, Buré, Simon, Jallas, Anne-Catherine, Granzotto, Adeline, Restier-Verlet, Juliette, Sonzogni, Laurène, Al-Choboq, Joëlle, Bourguignon, Michel, Pujo-Menjouet, Laurent, Foray, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although carcinogenesis is a multi-factorial process, the mutability and the capacity of cells to proliferate are among the major features of the cells that contribute together to the initiation and promotion steps of cancer formation. Particularly, mutability can be quantified by hyper-recombination rate assessed with specific plasmid assay, hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations frequency rate, or MRE11 nuclease activities. Cell proliferation can be assessed by flow cytometry by quantifying G2/M, G1 arrests, or global cellular evasion. All these assays were applied to skin untransformed fibroblasts derived from eight major cancer syndromes characterized by their excess of relative cancer risk (ERR). Significant correlations with ERR were found between hyper-recombination assessed by the plasmid assay and G2/M arrest and described a third-degree polynomial ERR function and a sigmoidal ERR function, respectively. The product of the hyper-recombination rate and capacity of proliferation described a linear ERR function that permits one to better discriminate each cancer syndrome. Hyper-recombination and cell proliferation were found to obey differential equations that better highlight the intrinsic bases of cancer formation. Further investigations to verify their relevance for cancer proneness induced by exogenous agents are in progress.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers16183188