Multireference Averaged Quadratic Coupled Cluster (MR-AQCC) Study of the Geometries and Energies for ortho-, meta- and para-Benzyne

The diradical benzyne isomers are excellent prototypes for evaluating the ability of an electronic structure method to describe static and dynamic correlation. The benzyne isomers are also interesting molecules with which to study the fundamentals of through-space and through-bond diradical coupling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-09, Vol.128 (37), p.7816-7829
Hauptverfasser: Vu, Khanh, Pandian, Joshua, Zhang, Boyi, Annas, Christina, Parker, Anna J., Mancini, John S., Wang, Evan B., Saldana-Greco, Diomedes, Nelson, Emily S., Springsted, Greg, Lischka, Hans, Plasser, Felix, Parish, Carol A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The diradical benzyne isomers are excellent prototypes for evaluating the ability of an electronic structure method to describe static and dynamic correlation. The benzyne isomers are also interesting molecules with which to study the fundamentals of through-space and through-bond diradical coupling that is important in so many electronic device applications. In the current study, we utilize the multireference methods MC-SCF, MR-CISD, MR-CISD+Q, and MR-AQCC with an (8,8) complete active space that includes the σ, σ*, π and π* orbitals, to characterize the electronic structure of ortho-, meta- and para-benzyne. We also determine the adiabatic and vertical singlet–triplet splittings for these isomers. MR-AQCC and MR-CISD+Q produced energy gaps in good agreement with previously obtained experimental values. Geometries, orbital energies and unpaired electron densities show significant through-space coupling in the o- and m-benzynes, while p-benzyne shows through-bond coupling, explaining the dramatically different singlet–triplet gaps between the three isomers.
ISSN:1089-5639
1520-5215
1520-5215
DOI:10.1021/acs.jpca.4c04099