Fast on-rates of chimeric antigen receptors enhance the sensitivity to peptide MHC via antigen rebinding

Chimeric antigen receptor (CAR) is a synthetic receptor that induces T cell-mediated lysis of abnormal cells. As cancer driver proteins are present at low levels on the cell surface, they can cause weak CAR reactivity, resulting in antigen sensitivity defects and consequently limited therapeutic eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-09, Vol.300 (9), p.107651, Article 107651
Hauptverfasser: Hiratsuka, Hiroyuki, Akahori, Yasushi, Maeta, Shingo, Egashira, Yuriko, Shiku, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chimeric antigen receptor (CAR) is a synthetic receptor that induces T cell-mediated lysis of abnormal cells. As cancer driver proteins are present at low levels on the cell surface, they can cause weak CAR reactivity, resulting in antigen sensitivity defects and consequently limited therapeutic efficacy. Although affinity maturation enhances the efficacy of CAR-T cell therapy, it causes off-target cross-reactions resulting in adverse effects. Preferentially expressed antigen in melanoma (PRAME) is an intracellular oncoprotein that is overexpressed in various tumors and restricted in normal tissues, except the testis. Therefore, PRAME could be an ideal target for cancer immunotherapy. In this study, we developed an experimental CAR system comprising six single-chain variable fragments that specifically recognizes the PRAMEp301/HLA-A∗24:02 complex. Cell-mediated cytotoxicity was demonstrated using a panel of CARs with a wide range of affinities (KD = 10−10–10−7 M) and affinity modulation. CAR-T cells with fast on-rates enhance antigen sensitivity by accelerating the killing rates of these cells. Alanine scanning data demonstrated the potential of genetically engineered CARs to reduce the risk of cross-reactivity, even among CARs with high affinities. Given the correlation between on-rates and dwell time that occurs in rebinding and cell-mediated cytotoxicity, it is proposed that CAR-binding characteristics, including on-rate, play a pivotal role in the lytic capacity of peptide-major histocompatibility complex-targeting CAR-T cells, thus facilitating the development of strategies whereby genetically engineered CARs target intracellular antigens in cancer cells to lyse the cells.
ISSN:0021-9258
1083-351X
1083-351X
DOI:10.1016/j.jbc.2024.107651