Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice
Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2024-09, Vol.28 (17), p.e70081-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | e70081 |
container_title | Journal of cellular and molecular medicine |
container_volume | 28 |
creator | Vu, Elizabeth K. Karkache, Ismael Y. Pham, Anthony Koroth, Jinsha Bradley, Elizabeth W. |
description | Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high‐fat/high‐sugar (HFD) diet. Micro‐CT analyses demonstrated that HFD‐feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3‐ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3‐ablated cells exhibited a four‐fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2‐positve cells within bone defects was significantly higher in Hdac3‐deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet‐induced obesity, possibly through increased production of CCL2 by macrophages within the defect. |
doi_str_mv | 10.1111/jcmm.70081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11390340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103449240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3921-81a504bd92b29e9e62d26e18796e11e18518fdd7734498633c54087a39d104dd3</originalsourceid><addsrcrecordid>eNp9kc1rVDEUxYMo9kM3_gEScFMK0-a-vI9kJTJUq7S4UVyGTHJfe4f3kjF5Y5n_3syHRV00i-RAfpycm8PYGxAXUNbl0o3jRSeEgmfsGBpVzWot6-cHDUqqI3aS81II2YLUL9mR1FULGuQxM9feOsk99uQIg9vwgUaaMl9hopgntANPaN1EMXCbc3RkJ_T8gaZ7_gMLkAL3hBPvET2FO06hyNEOyEdy-Iq96O2Q8fXhPGXfP159m1_Pbr5--jz_cDNzJQvMFNhG1Auvq0WlUWNb-apFUJ0uOxTRgOq97zpZ11q1UrqmFqqzUnsQtffylL3f-67WixG9wzAlO5hVotGmjYmWzL83ge7NXfxloPyIkLUoDmcHhxR_rstkZqTscBhswLjORoLYPl7t0Hf_ocu4TqHMt6O6BkA0hTrfUy7FnBP2j2lAmG1xZluc2RVX4Ld_539E_zRVANgDDzTg5gkr82V-e7s3_Q0ZBqLp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103751105</pqid></control><display><type>article</type><title>Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Vu, Elizabeth K. ; Karkache, Ismael Y. ; Pham, Anthony ; Koroth, Jinsha ; Bradley, Elizabeth W.</creator><creatorcontrib>Vu, Elizabeth K. ; Karkache, Ismael Y. ; Pham, Anthony ; Koroth, Jinsha ; Bradley, Elizabeth W.</creatorcontrib><description>Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high‐fat/high‐sugar (HFD) diet. Micro‐CT analyses demonstrated that HFD‐feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3‐ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3‐ablated cells exhibited a four‐fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2‐positve cells within bone defects was significantly higher in Hdac3‐deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet‐induced obesity, possibly through increased production of CCL2 by macrophages within the defect.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.70081</identifier><identifier>PMID: 39261913</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Ablation ; Animals ; Bone growth ; Bone healing ; Bone marrow ; Bone Regeneration ; Ccl2 ; Chemokine CCL2 - genetics ; Chemokine CCL2 - metabolism ; Chemokines ; Defects ; Diet ; Diet, High-Fat - adverse effects ; Diet, Western - adverse effects ; Female ; Females ; Fractures ; Gene expression ; high‐fat diet ; Histone deacetylase ; Histone Deacetylases - deficiency ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Intramembraneous bone ; Laboratory animals ; macrophage ; Macrophages ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mineralization ; Monocyte chemoattractant protein 1 ; Nutrient deficiency ; Obesity ; Obesity - etiology ; Obesity - metabolism ; Obesity - pathology ; Original ; osteoblast ; Osteoblasts - metabolism ; osteoclast ; Osteogenesis ; Osteoprogenitor cells ; Periosteum - metabolism ; Periosteum - pathology ; Regeneration ; Software ; Stem cells ; Tomography</subject><ispartof>Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70081-n/a</ispartof><rights>2024 The Author(s). published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3921-81a504bd92b29e9e62d26e18796e11e18518fdd7734498633c54087a39d104dd3</cites><orcidid>0000-0002-8814-5524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390340/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390340/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39261913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu, Elizabeth K.</creatorcontrib><creatorcontrib>Karkache, Ismael Y.</creatorcontrib><creatorcontrib>Pham, Anthony</creatorcontrib><creatorcontrib>Koroth, Jinsha</creatorcontrib><creatorcontrib>Bradley, Elizabeth W.</creatorcontrib><title>Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high‐fat/high‐sugar (HFD) diet. Micro‐CT analyses demonstrated that HFD‐feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3‐ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3‐ablated cells exhibited a four‐fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2‐positve cells within bone defects was significantly higher in Hdac3‐deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet‐induced obesity, possibly through increased production of CCL2 by macrophages within the defect.</description><subject>Ablation</subject><subject>Animals</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone marrow</subject><subject>Bone Regeneration</subject><subject>Ccl2</subject><subject>Chemokine CCL2 - genetics</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Chemokines</subject><subject>Defects</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Diet, Western - adverse effects</subject><subject>Female</subject><subject>Females</subject><subject>Fractures</subject><subject>Gene expression</subject><subject>high‐fat diet</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylases - deficiency</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Intramembraneous bone</subject><subject>Laboratory animals</subject><subject>macrophage</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mineralization</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Nutrient deficiency</subject><subject>Obesity</subject><subject>Obesity - etiology</subject><subject>Obesity - metabolism</subject><subject>Obesity - pathology</subject><subject>Original</subject><subject>osteoblast</subject><subject>Osteoblasts - metabolism</subject><subject>osteoclast</subject><subject>Osteogenesis</subject><subject>Osteoprogenitor cells</subject><subject>Periosteum - metabolism</subject><subject>Periosteum - pathology</subject><subject>Regeneration</subject><subject>Software</subject><subject>Stem cells</subject><subject>Tomography</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1rVDEUxYMo9kM3_gEScFMK0-a-vI9kJTJUq7S4UVyGTHJfe4f3kjF5Y5n_3syHRV00i-RAfpycm8PYGxAXUNbl0o3jRSeEgmfsGBpVzWot6-cHDUqqI3aS81II2YLUL9mR1FULGuQxM9feOsk99uQIg9vwgUaaMl9hopgntANPaN1EMXCbc3RkJ_T8gaZ7_gMLkAL3hBPvET2FO06hyNEOyEdy-Iq96O2Q8fXhPGXfP159m1_Pbr5--jz_cDNzJQvMFNhG1Auvq0WlUWNb-apFUJ0uOxTRgOq97zpZ11q1UrqmFqqzUnsQtffylL3f-67WixG9wzAlO5hVotGmjYmWzL83ge7NXfxloPyIkLUoDmcHhxR_rstkZqTscBhswLjORoLYPl7t0Hf_ocu4TqHMt6O6BkA0hTrfUy7FnBP2j2lAmG1xZluc2RVX4Ld_539E_zRVANgDDzTg5gkr82V-e7s3_Q0ZBqLp</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Vu, Elizabeth K.</creator><creator>Karkache, Ismael Y.</creator><creator>Pham, Anthony</creator><creator>Koroth, Jinsha</creator><creator>Bradley, Elizabeth W.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8814-5524</orcidid></search><sort><creationdate>202409</creationdate><title>Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice</title><author>Vu, Elizabeth K. ; Karkache, Ismael Y. ; Pham, Anthony ; Koroth, Jinsha ; Bradley, Elizabeth W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3921-81a504bd92b29e9e62d26e18796e11e18518fdd7734498633c54087a39d104dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone marrow</topic><topic>Bone Regeneration</topic><topic>Ccl2</topic><topic>Chemokine CCL2 - genetics</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Chemokines</topic><topic>Defects</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Diet, Western - adverse effects</topic><topic>Female</topic><topic>Females</topic><topic>Fractures</topic><topic>Gene expression</topic><topic>high‐fat diet</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylases - deficiency</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Intramembraneous bone</topic><topic>Laboratory animals</topic><topic>macrophage</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mineralization</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Nutrient deficiency</topic><topic>Obesity</topic><topic>Obesity - etiology</topic><topic>Obesity - metabolism</topic><topic>Obesity - pathology</topic><topic>Original</topic><topic>osteoblast</topic><topic>Osteoblasts - metabolism</topic><topic>osteoclast</topic><topic>Osteogenesis</topic><topic>Osteoprogenitor cells</topic><topic>Periosteum - metabolism</topic><topic>Periosteum - pathology</topic><topic>Regeneration</topic><topic>Software</topic><topic>Stem cells</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Elizabeth K.</creatorcontrib><creatorcontrib>Karkache, Ismael Y.</creatorcontrib><creatorcontrib>Pham, Anthony</creatorcontrib><creatorcontrib>Koroth, Jinsha</creatorcontrib><creatorcontrib>Bradley, Elizabeth W.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Elizabeth K.</au><au>Karkache, Ismael Y.</au><au>Pham, Anthony</au><au>Koroth, Jinsha</au><au>Bradley, Elizabeth W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>28</volume><issue>17</issue><spage>e70081</spage><epage>n/a</epage><pages>e70081-n/a</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high‐fat/high‐sugar (HFD) diet. Micro‐CT analyses demonstrated that HFD‐feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3‐ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3‐ablated cells exhibited a four‐fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2‐positve cells within bone defects was significantly higher in Hdac3‐deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet‐induced obesity, possibly through increased production of CCL2 by macrophages within the defect.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>39261913</pmid><doi>10.1111/jcmm.70081</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8814-5524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70081-n/a |
issn | 1582-1838 1582-4934 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11390340 |
source | MEDLINE; Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals; PubMed Central |
subjects | Ablation Animals Bone growth Bone healing Bone marrow Bone Regeneration Ccl2 Chemokine CCL2 - genetics Chemokine CCL2 - metabolism Chemokines Defects Diet Diet, High-Fat - adverse effects Diet, Western - adverse effects Female Females Fractures Gene expression high‐fat diet Histone deacetylase Histone Deacetylases - deficiency Histone Deacetylases - genetics Histone Deacetylases - metabolism Intramembraneous bone Laboratory animals macrophage Macrophages Mice Mice, Inbred C57BL Mice, Knockout Mineralization Monocyte chemoattractant protein 1 Nutrient deficiency Obesity Obesity - etiology Obesity - metabolism Obesity - pathology Original osteoblast Osteoblasts - metabolism osteoclast Osteogenesis Osteoprogenitor cells Periosteum - metabolism Periosteum - pathology Regeneration Software Stem cells Tomography |
title | Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hdac3%20deficiency%20limits%20periosteal%20reaction%20associated%20with%20Western%20diet%20feeding%20in%20female%20mice&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Vu,%20Elizabeth%20K.&rft.date=2024-09&rft.volume=28&rft.issue=17&rft.spage=e70081&rft.epage=n/a&rft.pages=e70081-n/a&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.70081&rft_dat=%3Cproquest_pubme%3E3103449240%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103751105&rft_id=info:pmid/39261913&rfr_iscdi=true |