Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice

Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2024-09, Vol.28 (17), p.e70081-n/a
Hauptverfasser: Vu, Elizabeth K., Karkache, Ismael Y., Pham, Anthony, Koroth, Jinsha, Bradley, Elizabeth W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page e70081
container_title Journal of cellular and molecular medicine
container_volume 28
creator Vu, Elizabeth K.
Karkache, Ismael Y.
Pham, Anthony
Koroth, Jinsha
Bradley, Elizabeth W.
description Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high‐fat/high‐sugar (HFD) diet. Micro‐CT analyses demonstrated that HFD‐feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3‐ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3‐ablated cells exhibited a four‐fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2‐positve cells within bone defects was significantly higher in Hdac3‐deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet‐induced obesity, possibly through increased production of CCL2 by macrophages within the defect.
doi_str_mv 10.1111/jcmm.70081
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11390340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103449240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3921-81a504bd92b29e9e62d26e18796e11e18518fdd7734498633c54087a39d104dd3</originalsourceid><addsrcrecordid>eNp9kc1rVDEUxYMo9kM3_gEScFMK0-a-vI9kJTJUq7S4UVyGTHJfe4f3kjF5Y5n_3syHRV00i-RAfpycm8PYGxAXUNbl0o3jRSeEgmfsGBpVzWot6-cHDUqqI3aS81II2YLUL9mR1FULGuQxM9feOsk99uQIg9vwgUaaMl9hopgntANPaN1EMXCbc3RkJ_T8gaZ7_gMLkAL3hBPvET2FO06hyNEOyEdy-Iq96O2Q8fXhPGXfP159m1_Pbr5--jz_cDNzJQvMFNhG1Auvq0WlUWNb-apFUJ0uOxTRgOq97zpZ11q1UrqmFqqzUnsQtffylL3f-67WixG9wzAlO5hVotGmjYmWzL83ge7NXfxloPyIkLUoDmcHhxR_rstkZqTscBhswLjORoLYPl7t0Hf_ocu4TqHMt6O6BkA0hTrfUy7FnBP2j2lAmG1xZluc2RVX4Ld_539E_zRVANgDDzTg5gkr82V-e7s3_Q0ZBqLp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103751105</pqid></control><display><type>article</type><title>Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Vu, Elizabeth K. ; Karkache, Ismael Y. ; Pham, Anthony ; Koroth, Jinsha ; Bradley, Elizabeth W.</creator><creatorcontrib>Vu, Elizabeth K. ; Karkache, Ismael Y. ; Pham, Anthony ; Koroth, Jinsha ; Bradley, Elizabeth W.</creatorcontrib><description>Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high‐fat/high‐sugar (HFD) diet. Micro‐CT analyses demonstrated that HFD‐feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3‐ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3‐ablated cells exhibited a four‐fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2‐positve cells within bone defects was significantly higher in Hdac3‐deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet‐induced obesity, possibly through increased production of CCL2 by macrophages within the defect.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.70081</identifier><identifier>PMID: 39261913</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Ablation ; Animals ; Bone growth ; Bone healing ; Bone marrow ; Bone Regeneration ; Ccl2 ; Chemokine CCL2 - genetics ; Chemokine CCL2 - metabolism ; Chemokines ; Defects ; Diet ; Diet, High-Fat - adverse effects ; Diet, Western - adverse effects ; Female ; Females ; Fractures ; Gene expression ; high‐fat diet ; Histone deacetylase ; Histone Deacetylases - deficiency ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Intramembraneous bone ; Laboratory animals ; macrophage ; Macrophages ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mineralization ; Monocyte chemoattractant protein 1 ; Nutrient deficiency ; Obesity ; Obesity - etiology ; Obesity - metabolism ; Obesity - pathology ; Original ; osteoblast ; Osteoblasts - metabolism ; osteoclast ; Osteogenesis ; Osteoprogenitor cells ; Periosteum - metabolism ; Periosteum - pathology ; Regeneration ; Software ; Stem cells ; Tomography</subject><ispartof>Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70081-n/a</ispartof><rights>2024 The Author(s). published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3921-81a504bd92b29e9e62d26e18796e11e18518fdd7734498633c54087a39d104dd3</cites><orcidid>0000-0002-8814-5524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390340/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390340/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39261913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu, Elizabeth K.</creatorcontrib><creatorcontrib>Karkache, Ismael Y.</creatorcontrib><creatorcontrib>Pham, Anthony</creatorcontrib><creatorcontrib>Koroth, Jinsha</creatorcontrib><creatorcontrib>Bradley, Elizabeth W.</creatorcontrib><title>Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high‐fat/high‐sugar (HFD) diet. Micro‐CT analyses demonstrated that HFD‐feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3‐ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3‐ablated cells exhibited a four‐fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2‐positve cells within bone defects was significantly higher in Hdac3‐deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet‐induced obesity, possibly through increased production of CCL2 by macrophages within the defect.</description><subject>Ablation</subject><subject>Animals</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone marrow</subject><subject>Bone Regeneration</subject><subject>Ccl2</subject><subject>Chemokine CCL2 - genetics</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Chemokines</subject><subject>Defects</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Diet, Western - adverse effects</subject><subject>Female</subject><subject>Females</subject><subject>Fractures</subject><subject>Gene expression</subject><subject>high‐fat diet</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylases - deficiency</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Intramembraneous bone</subject><subject>Laboratory animals</subject><subject>macrophage</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mineralization</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Nutrient deficiency</subject><subject>Obesity</subject><subject>Obesity - etiology</subject><subject>Obesity - metabolism</subject><subject>Obesity - pathology</subject><subject>Original</subject><subject>osteoblast</subject><subject>Osteoblasts - metabolism</subject><subject>osteoclast</subject><subject>Osteogenesis</subject><subject>Osteoprogenitor cells</subject><subject>Periosteum - metabolism</subject><subject>Periosteum - pathology</subject><subject>Regeneration</subject><subject>Software</subject><subject>Stem cells</subject><subject>Tomography</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1rVDEUxYMo9kM3_gEScFMK0-a-vI9kJTJUq7S4UVyGTHJfe4f3kjF5Y5n_3syHRV00i-RAfpycm8PYGxAXUNbl0o3jRSeEgmfsGBpVzWot6-cHDUqqI3aS81II2YLUL9mR1FULGuQxM9feOsk99uQIg9vwgUaaMl9hopgntANPaN1EMXCbc3RkJ_T8gaZ7_gMLkAL3hBPvET2FO06hyNEOyEdy-Iq96O2Q8fXhPGXfP159m1_Pbr5--jz_cDNzJQvMFNhG1Auvq0WlUWNb-apFUJ0uOxTRgOq97zpZ11q1UrqmFqqzUnsQtffylL3f-67WixG9wzAlO5hVotGmjYmWzL83ge7NXfxloPyIkLUoDmcHhxR_rstkZqTscBhswLjORoLYPl7t0Hf_ocu4TqHMt6O6BkA0hTrfUy7FnBP2j2lAmG1xZluc2RVX4Ld_539E_zRVANgDDzTg5gkr82V-e7s3_Q0ZBqLp</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Vu, Elizabeth K.</creator><creator>Karkache, Ismael Y.</creator><creator>Pham, Anthony</creator><creator>Koroth, Jinsha</creator><creator>Bradley, Elizabeth W.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8814-5524</orcidid></search><sort><creationdate>202409</creationdate><title>Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice</title><author>Vu, Elizabeth K. ; Karkache, Ismael Y. ; Pham, Anthony ; Koroth, Jinsha ; Bradley, Elizabeth W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3921-81a504bd92b29e9e62d26e18796e11e18518fdd7734498633c54087a39d104dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone marrow</topic><topic>Bone Regeneration</topic><topic>Ccl2</topic><topic>Chemokine CCL2 - genetics</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Chemokines</topic><topic>Defects</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Diet, Western - adverse effects</topic><topic>Female</topic><topic>Females</topic><topic>Fractures</topic><topic>Gene expression</topic><topic>high‐fat diet</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylases - deficiency</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Intramembraneous bone</topic><topic>Laboratory animals</topic><topic>macrophage</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mineralization</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Nutrient deficiency</topic><topic>Obesity</topic><topic>Obesity - etiology</topic><topic>Obesity - metabolism</topic><topic>Obesity - pathology</topic><topic>Original</topic><topic>osteoblast</topic><topic>Osteoblasts - metabolism</topic><topic>osteoclast</topic><topic>Osteogenesis</topic><topic>Osteoprogenitor cells</topic><topic>Periosteum - metabolism</topic><topic>Periosteum - pathology</topic><topic>Regeneration</topic><topic>Software</topic><topic>Stem cells</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Elizabeth K.</creatorcontrib><creatorcontrib>Karkache, Ismael Y.</creatorcontrib><creatorcontrib>Pham, Anthony</creatorcontrib><creatorcontrib>Koroth, Jinsha</creatorcontrib><creatorcontrib>Bradley, Elizabeth W.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Elizabeth K.</au><au>Karkache, Ismael Y.</au><au>Pham, Anthony</au><au>Koroth, Jinsha</au><au>Bradley, Elizabeth W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>28</volume><issue>17</issue><spage>e70081</spage><epage>n/a</epage><pages>e70081-n/a</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high‐fat/high‐sugar (HFD) diet. Micro‐CT analyses demonstrated that HFD‐feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3‐ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3‐ablated cells exhibited a four‐fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2‐positve cells within bone defects was significantly higher in Hdac3‐deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet‐induced obesity, possibly through increased production of CCL2 by macrophages within the defect.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39261913</pmid><doi>10.1111/jcmm.70081</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8814-5524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70081-n/a
issn 1582-1838
1582-4934
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11390340
source MEDLINE; Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals; PubMed Central
subjects Ablation
Animals
Bone growth
Bone healing
Bone marrow
Bone Regeneration
Ccl2
Chemokine CCL2 - genetics
Chemokine CCL2 - metabolism
Chemokines
Defects
Diet
Diet, High-Fat - adverse effects
Diet, Western - adverse effects
Female
Females
Fractures
Gene expression
high‐fat diet
Histone deacetylase
Histone Deacetylases - deficiency
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Intramembraneous bone
Laboratory animals
macrophage
Macrophages
Mice
Mice, Inbred C57BL
Mice, Knockout
Mineralization
Monocyte chemoattractant protein 1
Nutrient deficiency
Obesity
Obesity - etiology
Obesity - metabolism
Obesity - pathology
Original
osteoblast
Osteoblasts - metabolism
osteoclast
Osteogenesis
Osteoprogenitor cells
Periosteum - metabolism
Periosteum - pathology
Regeneration
Software
Stem cells
Tomography
title Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hdac3%20deficiency%20limits%20periosteal%20reaction%20associated%20with%20Western%20diet%20feeding%20in%20female%20mice&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Vu,%20Elizabeth%20K.&rft.date=2024-09&rft.volume=28&rft.issue=17&rft.spage=e70081&rft.epage=n/a&rft.pages=e70081-n/a&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.70081&rft_dat=%3Cproquest_pubme%3E3103449240%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103751105&rft_id=info:pmid/39261913&rfr_iscdi=true