Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice

Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2024-09, Vol.28 (17), p.e70081-n/a
Hauptverfasser: Vu, Elizabeth K., Karkache, Ismael Y., Pham, Anthony, Koroth, Jinsha, Bradley, Elizabeth W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diet‐induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti‐inflammatory agents. Prior reports show that myeloid progenitor‐directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high‐fat/high‐sugar (HFD) diet. Micro‐CT analyses demonstrated that HFD‐feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3‐ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3‐ablated cells exhibited a four‐fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2‐positve cells within bone defects was significantly higher in Hdac3‐deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet‐induced obesity, possibly through increased production of CCL2 by macrophages within the defect.
ISSN:1582-1838
1582-4934
1582-4934
DOI:10.1111/jcmm.70081