Antigen and thapsigargin promote influx of Ca2+ in rat basophilic RBL-2H3 cells by ostensibly similar mechanisms that allow filling of inositol 1,4,5-trisphosphate-sensitive and mitochondrial Ca2+ stores
In single, Fura 2-loaded RBL-2H3 cells, antigen and thapsigargin depleted the same intracellular pool of Ca2+ in the absence of external Ca2+; provision of external Ca2+ induced immediate increases in levels of free Ca2+ ([Ca2+]i). These increases were dependent on the presence of external Ca2+ and,...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 1994-12, Vol.304 ( Pt 2) (2), p.431-440 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In single, Fura 2-loaded RBL-2H3 cells, antigen and thapsigargin depleted the same intracellular pool of Ca2+ in the absence of external Ca2+; provision of external Ca2+ induced immediate increases in levels of free Ca2+ ([Ca2+]i). These increases were dependent on the presence of external Ca2+ and, presumably, on influx of Ca2+ across the cell membrane. Both stimulants enhanced intracellular accumulation of 45Ca2+ through ostensibly similar mechanisms because accumulation was blocked to similar extents by various multivalent cations or by depolarization with K+. Because thapsigargin blocked reuptake of Ca2+ into inositol 1,4,5-trisphosphate sensitive stores, uptake occurred independently of the refilling of these stores. Uptake was dependent instead on sequestration of 45Ca2+ in a pool of high capacity that was insensitive to thapsigargin, caffeine, GTP and inositol 1,4,5-trisphosphate but sensitive to ionomycin and mitochondrial inhibitors. The existence of an inositol 1,4,5-trisphosphate-insensitive pool was also apparent in permeabilized cells; at 0.1 microM [Ca2+]i, uptake of 45Ca2+ was largely confined (> 80%) to the inositol 1,4,5-trisphosphate-sensitive pool, but at 2 microM [Ca2+]i uptake was largely (> 60%) into the inositol 1,4,5-trisphosphate-insensitive pool. Provision of mitochondrial inhibitors along with thapsigargin to block uptake into both pools, did not impair the thapsigargin-induced increase in [Ca2+]i or influx of Ca2+, as indicated by changes in Fura 2 fluorescence, but did block the intracellular accumulation of 45Ca2+. The studies illustrate the utility of simultaneous measurements of [Ca2+]i and 45Ca2+ uptake for a full accounting of Ca2+ homoeostasis as exemplified by the ability to distinguish between influx and mitochondrial uptake of Ca2+. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj3040431 |