Meta-analysis of RNA interaction profiles of RNA-binding protein using the RBPInper tool
Abstract Motivation Recent RNA-centric experimental methods have significantly expanded our knowledge of proteins with known RNA-binding functions. However, the complete regulatory network and pathways for many of these RNA-binding proteins (RBPs) in different cellular contexts remain unknown. Altho...
Gespeichert in:
Veröffentlicht in: | Bioinformatics advances 2024, Vol.4 (1), p.vbae127 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
Recent RNA-centric experimental methods have significantly expanded our knowledge of proteins with known RNA-binding functions. However, the complete regulatory network and pathways for many of these RNA-binding proteins (RBPs) in different cellular contexts remain unknown. Although critical to understanding the role of RBPs in health and disease, experimentally mapping the RBP–RNA interactomes in every single context is an impossible task due the cost and manpower required. Additionally, identifying relevant RNAs bound by RBPs is challenging due to their diverse binding modes and function.
Results
To address these challenges, we developed RBP interaction mapper RBPInper an integrative framework that discovers global RBP interactome using statistical data fusion. Experiments on splicing factor proline and glutamine rich (SFPQ) datasets revealed cogent global SFPQ interactome. Several biological processes associated with this interactome were previously linked with SFPQ function. Furthermore, we conducted tests using independent dataset to assess the transferability of the SFPQ interactome to another context. The results demonstrated robust utility in generating interactomes that transfers to unseen cellular context. Overall, RBPInper is a fast and user-friendly method that enables a systems-level understanding of RBP functions by integrating multiple molecular datasets. The tool is designed with a focus on simplicity, minimal dependencies, and straightforward input requirements. This intentional design aims to empower everyday biologists, making it easy for them to incorporate the tool into their research.
Availability and implementation
The source code, documentation, and installation instructions as well as results for use case are freely available at https://github.com/AneneLab/RBPInper. A user can easily compile similar datasets for a target RBP. |
---|---|
ISSN: | 2635-0041 2635-0041 |
DOI: | 10.1093/bioadv/vbae127 |