Efficacy of aspergillomarasmine A/meropenem combinations with and without avibactam against bacterial strains producing multiple β-lactamases

The effectiveness of β-lactam antibiotics is increasingly threatened by resistant bacteria that harbor hydrolytic β-lactamase enzymes. Depending on the class of β-lactamase present, β-lactam hydrolysis can occur through one of two general molecular mechanisms. Metallo-β-lactamases (MBLs) require act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antimicrobial agents and chemotherapy 2024-09, Vol.68 (9), p.e0027224
Hauptverfasser: Rotondo, Caitlyn M, Wright, Gerard D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effectiveness of β-lactam antibiotics is increasingly threatened by resistant bacteria that harbor hydrolytic β-lactamase enzymes. Depending on the class of β-lactamase present, β-lactam hydrolysis can occur through one of two general molecular mechanisms. Metallo-β-lactamases (MBLs) require active site Zn ions, whereas serine-β-lactamases (SBLs) deploy a catalytic serine residue. The result in both cases is drug inactivation via the opening of the β-lactam warhead of the antibiotic. MBLs confer resistance to most β-lactams and are non-susceptible to SBL inhibitors, including recently approved diazabicyclooctanes, such as avibactam; consequently, these enzymes represent a growing threat to public health. Aspergillomarasmine A (AMA), a fungal natural product, can rescue the activity of the β-lactam antibiotic meropenem against MBL-expressing bacterial strains. However, the effectiveness of this β-lactam/β-lactamase inhibitor combination against bacteria producing multiple β-lactamases remains unknown. We systematically investigated the efficacy of AMA/meropenem combination therapy with and without avibactam against 10 and 10 laboratory strains tandemly expressing single MBL and SBL enzymes. Cell-based assays demonstrated that laboratory strains producing NDM-1 and KPC-2 carbapenemases were resistant to the AMA/meropenem combination but became drug-susceptible upon adding avibactam. We also probed these combinations against 30 clinical isolates expressing multiple β-lactamases. , and clinical isolates were more susceptible to AMA, avibactam, and meropenem than and isolates. Overall, the results demonstrate that a triple combination of AMA/avibactam/meropenem has potential for empirical treatment of infections caused by multiple β-lactamase-producing bacteria, especially Enterobacterales.
ISSN:0066-4804
1098-6596
1098-6596
DOI:10.1128/aac.00272-24