Two new sphingomyelin analogues inhibit phosphatidylcholine biosynthesis by decreasing membrane-bound CTP: phosphocholine cytidylyltransferase levels in HaCaT cells

The effects of two newly synthesized sphingomyelin analogues on phosphatidylcholine biosynthesis were investigated in the immortalized human keratinocyte cell line HaCaT. N-Acetyl-erythro-sphingosine-1-phosphocholine (AcSM) and N-octanoyl-erythro-sphingosine-1-phosphocholine (OcSM) inhibited the inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1995-11, Vol.311 ( Pt 3) (3), p.873-879
Hauptverfasser: Wieder, T, Perlitz, C, Wieprecht, M, Huang, R T, Geilen, C C, Orfanos, C E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of two newly synthesized sphingomyelin analogues on phosphatidylcholine biosynthesis were investigated in the immortalized human keratinocyte cell line HaCaT. N-Acetyl-erythro-sphingosine-1-phosphocholine (AcSM) and N-octanoyl-erythro-sphingosine-1-phosphocholine (OcSM) inhibited the incorporation of choline into phosphatidylcholine with half-inhibitory concentrations (IC50) of 6 micrograms/ml and 10 micrograms/ml respectively. Further experiments revealed that AcSM and OcSM interfered with the translocation of the rate-limiting enzyme of phosphatidylcholine biosynthesis, CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15), in HaCaT cells and inhibited cytidylyltransferase activity in vitro. Despite the fact that OcSM was a potent inhibitor of cytidylyltransferase in vitro, its effects on phosphatidylcholine biosynthesis and translocation of cytidylyltransferase in HaCaT cells were less pronounced as compared with AcSM. Finally, we showed that the comparatively strong effects of AcSM in cell culture experiments were due to the uptake of large amounts of this sphingomyelin analogue into the cells. The results presented demonstrate that the activity of cytidylyltransferase may be negatively regulated by a high ratio of choline head group-containing sphingolipids.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3110873