Amino acid sequence of HSP-1, a major protein of stallion seminal plasma: effect of glycosylation on its heparin- and gelatin-binding capabilities

We report the complete amino acid sequence of HSP-1, a major protein isolated from stallion seminal plasma or acid extracts of ejaculated spermatozoa. The protein consists of 121 amino acids organized in two types of homologous repeats arranged in the pattern AA'BB'. Each of the 13-15-resi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1995-09, Vol.310 ( Pt 2) (2), p.615-622
Hauptverfasser: Calvete, J J, Mann, K, Schäfer, W, Sanz, L, Reinert, M, Nessau, S, Raida, M, Töpfer-Petersen, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the complete amino acid sequence of HSP-1, a major protein isolated from stallion seminal plasma or acid extracts of ejaculated spermatozoa. The protein consists of 121 amino acids organized in two types of homologous repeats arranged in the pattern AA'BB'. Each of the 13-15-residue A-type repeats contains two O-linked oligosaccharide chains. The B-type repeats span 44-47 amino acids each, are not glycosylated, and have the consensus pattern of the gelatin-binding fibronectin type-II module. This domain also occurs in the major bovine seminal plasma heparin-binding proteins PDC-109 (BSP-A1/A2) and BSP-A3. However, unlike the bovine proteins which bind quantitatively to a heparin-Sepharose column, stallion HSP-1 was recovered in both the flow-through and the heparin-bound fractions. Structural analysis showed that the two HSP-1 forms contain identical polypeptide chains which are differently glycosylated. Moreover, size-exclusion chromatography showed that heparin-bound HSP-1 associates with HSP-2, another major seminal plasma protein, into a 90 kDa product, whereas the non-heparin-bound glycoform of HSP-1 is eluted as a monomeric (14 kDa) protein. This suggests that glycosylation may have an indirect effect on the heparin-binding ability of HSP-1 through modulation of its aggregation state. On the other hand, both glycoforms of HSP-1 displayed gelatin-binding activity, indicating that the molecular determinants for binding heparin and gelatin are different.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3100615