study of novel lectins and their involvement in the activation of the prophenoloxidase system in Blaberus discoidalis

Endogenous and exogenous lectins have been found to activate the prophenoloxidase (proPO) system of the cockroach, Blaberus discoidalis, to the same extent as laminarin, a previously known microbial activator of proPO. The lectins can also further enhance this laminarin activation of the proPO syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1995-08, Vol.310 (1), p.23-31
Hauptverfasser: Chen, C, Durrant, H.J, Newton, R.P, Ratcliffe, N.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endogenous and exogenous lectins have been found to activate the prophenoloxidase (proPO) system of the cockroach, Blaberus discoidalis, to the same extent as laminarin, a previously known microbial activator of proPO. The lectins can also further enhance this laminarin activation of the proPO system. Non-lectin proteins did not display any activation properties. The time course of proPO activation was studied after reconstitution of the reaction system using purified lectins, a trypsin-like enzyme, a trypsin inhibitor and partially purified lectin-binding proteins from the cockroach haemolymph. Lectin activation of the proPO system is probably not mediated by the lectin sugar-binding sites, as specific inhibitory sugars failed to abrogate the enhanced effect. The results suggest that alternative binding site(s) on the lectins may be involved in the proPO activation process. Evidence also suggests that several different lectins are involved in the regulation of the proPO system through separate receptors or binding molecules on the haemocytes, and that they exert their effects early in the sequence of events leading to conversion of proPO into its active form, possibly via regulation of serine proteases and protease inhibitors.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3100023