Anti-Corrosion Flocking Surface with Enhanced Wettability and Evaporation
The corrosion protection of tool steel surfaces is of significant importance for ensuring cutting precision and cost savings. However, conventional surface protection measures usually rely on toxic organic solvents, posing threats to the environment and human health. In this regard, an integrated pr...
Gespeichert in:
Veröffentlicht in: | Materials 2024-08, Vol.17 (16), p.4166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The corrosion protection of tool steel surfaces is of significant importance for ensuring cutting precision and cost savings. However, conventional surface protection measures usually rely on toxic organic solvents, posing threats to the environment and human health. In this regard, an integrated process of laser texturing and electrostatic flocking is introduced as a green anti-corrosion method on a high-speed steel (HSS) surface. Drawing from the principles of textured surface energy barrier reduction and fiber array capillary water evaporation enhancement, a flocking surface with a synergistic optimization of surface wettability and evaporation performance was achieved. Then, contact corrosion tests using 0.1 mol/L of NaCl droplets were performed. Contact angles representing wettability and change in droplet mass representing evaporation properties were collected. The elements and chemical bonds presented on the corroded surfaces were characterized by X-ray photoelectron spectroscopy (XPS). The results revealed that the flocking surface exhibited the lowest degree of corrosion when compared with smooth and textured surfaces. Corrosion resistance of the flocking surface was achieved through the rapid spread and evaporation of droplets, which reduced the reaction time and mitigated electrochemical corrosion. This innovative flocking surface holds promise as an effective treatment in anti-corrosion strategies for cutting tools. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17164166 |