Gene Expression of Neurogenesis Related to Exercise Intensity in a Cerebral Infarction Rat Model

Regular exercise improves several functions, including cognition, in patients with stroke. However, the effect of regular exercise on neurogenesis related to cognition remains doubtful. We investigated the most effective exercise intensity for functional recovery after stroke using RNA sequencing fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-08, Vol.25 (16), p.8997
Hauptverfasser: Song, Min-Keun, Jo, Hyun-Seok, Kim, Eun-Jong, Kim, Jung-Kook, Lee, Sam-Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regular exercise improves several functions, including cognition, in patients with stroke. However, the effect of regular exercise on neurogenesis related to cognition remains doubtful. We investigated the most effective exercise intensity for functional recovery after stroke using RNA sequencing following regular treadmill exercise. Photothrombotic cerebral infarction was conducted for 10-week-old male Sprague-Dawley rats ( = 36). A Morris water maze (MWM) test was performed before a regular treadmill exercise program (5 days/week, 4 weeks). Rats were randomly divided into four groups: group A (no exercise); group B (low intensity, maximal velocity 18 m/min); group C (moderate intensity, maximal velocity 24 m/min) and group D (high intensity, maximal velocity 30 m/min). After 4 weeks, another MWM test was performed, and all rats were sacrificed. RNA sequencing was performed with ipsilesional hippocampal tissue. On the day after cerebral infarction, no differences in escape latency and velocity were observed among the groups. At 4 weeks after cerebral infarction, the escape latencies in groups B, C, and D were shorter than in group A. The escape latencies in groups B and C were shorter than in group D. The velocity in groups A, B, and C was faster than in group D. Thirty gene symbols related to neurogenesis were detected ( < 0.05, fold change > 1.0, average normalized read count > four times). In the neurotrophin-signaling pathway, the gene was upregulated, and the gene was downregulated in the low-intensity group. The and genes were both downregulated in the moderate-intensity group. The and genes were downregulated in the high-intensity group. Western blot analysis showed that expression was lowest in the moderate-intensity group, whereas and were elevated, and was decreased in the high-intensity group. Moderate-intensity exercise may contribute to neuroplasticity. Variation in the expression of neurotrophins in neurogenesis according to exercise intensity may reveal the mechanism of neuroplasticity. Thus, is the key neurotrophin for neurogenesis related to exercise intensity.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25168997