Potentiation by Protein Synthesis Inducers of Translational Readthrough of Pathogenic Premature Termination Codons in PTEN Isoforms
The PTEN tumor suppressor is frequently targeted in tumors and patients with PTEN hamartoma tumor syndrome (PHTS) through nonsense mutations generating premature termination codons (PTC) that may cause the translation of truncated non-functional PTEN proteins. We have previously described a global a...
Gespeichert in:
Veröffentlicht in: | Cancers 2024-08, Vol.16 (16), p.2836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The PTEN tumor suppressor is frequently targeted in tumors and patients with PTEN hamartoma tumor syndrome (PHTS) through nonsense mutations generating premature termination codons (PTC) that may cause the translation of truncated non-functional PTEN proteins. We have previously described a global analysis of the readthrough reconstitution of the protein translation and function of the human canonical PTEN isoform by aminoglycosides. Here, we report the efficient functional readthrough reconstitution of the PTEN translational isoform PTEN-L, which displays a minimal number of PTC in its specific N-terminal extension in association with disease. We illustrate the importance of the specific PTC and its nucleotide proximal sequence for optimal readthrough and show that the more frequent human PTEN PTC variants and their mouse PTEN PTC equivalents display similar patterns of readthrough efficiency. The heterogeneous readthrough response of the different PTEN PTC variants was independent of the length of the PTEN protein being reconstituted, and we found a correlation between the amount of PTEN protein being synthesized and the PTEN readthrough efficiency. Furthermore, combination of aminoglycosides and protein synthesis inducers increased the readthrough response of specific PTEN PTC. Our results provide insights with which to improve the functional reconstitution of human-disease-related PTC pathogenic variants from PTEN isoforms by increasing protein synthesis coupled to translational readthrough. |
---|---|
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers16162836 |