Regional impact of multidrug-resistant organism prevention bundles implemented by facility type: A modeling study
Emerging multidrug-resistant organisms (MDROs), such as carbapenem-resistant Enterobacterales (CRE), can spread rapidly in a region. Facilities that care for high-acuity patients with longer stays may have a disproportionate impact on this spread. We assessed the impact of implementing preventive in...
Gespeichert in:
Veröffentlicht in: | Infection control and hospital epidemiology 2024-07, Vol.45 (7), p.856-863 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Emerging multidrug-resistant organisms (MDROs), such as carbapenem-resistant Enterobacterales (CRE), can spread rapidly in a region. Facilities that care for high-acuity patients with longer stays may have a disproportionate impact on this spread.
We assessed the impact of implementing preventive interventions, directed at a subset of facilities, on regional prevalence.
We developed a deterministic compartmental model, parametrized using CRE and patient transfer data. The model included the community and healthcare facilities within a US state. Individuals may be either susceptible or infectious with CRE. Individuals determined to be infectious through admission screening, periodic prevalence surveys (PPSs), or interfacility communication were placed in a state of lower transmissibility if enhanced infection prevention and control (IPC) practices were in place at a facility.
Intervention bundles that included PPS and enhanced IPC practices at ventilator-capable skilled nursing facilities (vSNFs) and long-term acute-care hospitals (LTACHs) had the greatest impact on regional prevalence. The benefits of including targeted admission screening in acute-care hospitals, LTACHs, and vSNFs, and improved interfacility communication were more modest. Daily transmissions in each facility type were reduced following the implementation of interventions primarily focused at LTACHs and vSNFs.
Our model suggests that interventions that include screening to limit unrecognized MDRO introduction to, or dispersal from, LTACHs and vSNFs slow regional spread. Interventions that pair detection and enhanced IPC practices within LTACHs and vSNFs may substantially reduce the regional burden. |
---|---|
ISSN: | 0899-823X 1559-6834 1559-6834 |
DOI: | 10.1017/ice.2023.278 |