Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer

We describe a fluorescence resonance energy transfer (FRET)-based method for finding in living cells the fraction of a protein population (alpha(T)) forming complexes, and the average number (n) of those protein molecules in each complex. The method relies both on sensitized acceptor emission and on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2005-01, Vol.385 (Pt 1), p.265-277
Hauptverfasser: Raicu, Valerică, Jansma, David B, Miller, R J Dwayne, Friesen, James D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a fluorescence resonance energy transfer (FRET)-based method for finding in living cells the fraction of a protein population (alpha(T)) forming complexes, and the average number (n) of those protein molecules in each complex. The method relies both on sensitized acceptor emission and on donor de-quenching (by photobleaching of the acceptor molecules), coupled with full spectral analysis of the differential fluorescence signature, in order to quantify the donor/acceptor energy transfer. The approach and sensitivity limits are well suited for in vivo microscopic investigations. This is demonstrated using a scanning laser confocal microscope to study complex formation of the sterile 2 alpha-factor receptor protein (Ste2p), labelled with green, cyan, and yellow fluorescent proteins (GFP, CFP, and YFP respectively), in budding yeast Saccharomyces cerevisiae. A theoretical model is presented that relates the efficiency of energy transfer in protein populations (the apparent FRET efficiency, E(app)) to the energy transferred in a single donor/acceptor pair (E, the true FRET efficiency). We determined E by using a new method that relies on E(app) measurements for two donor/acceptor pairs, Ste2p-CFP/Ste2p-YFP and Ste2p-GFP/Ste2p-YFP. From E(app) and E we determined alpha(T) approximately 1 and n approximately 2 for Ste2 proteins. Since the Ste2p complexes are formed in the absence of the ligand in our experiments, we conclude that the alpha-factor pheromone is not necessary for dimerization.
ISSN:0264-6021
1470-8728
1470-8728
DOI:10.1042/bj20040226