Impact of sediment mobilization on trace elements release in Galician Rías (NW Iberian Peninsula): insights into aquaculture
In the latest years, the concentration levels of certain metals and metalloids in the sediments of the Galician Rías have shown an increasing trend (e.g., As, Zn, Cu, Pb, Hg). These areas are also characterized by their richness in nutrients and their great aquaculture or mariculture activity, with...
Gespeichert in:
Veröffentlicht in: | Environmental monitoring and assessment 2024-09, Vol.196 (9), p.835, Article 835 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the latest years, the concentration levels of certain metals and metalloids in the sediments of the Galician Rías have shown an increasing trend (e.g., As, Zn, Cu, Pb, Hg). These areas are also characterized by their richness in nutrients and their great aquaculture or mariculture activity, with the presence of more than 3500 mussel rafts in the Rías Baixas. The inner areas of the Galician Rías are subjected to activities that resuspend the sediment such as high levels of maritime traffic and dredging or cleaning operations. It is likely that a transfer of these elements to the water column happens during the resuspension of sediments caused by natural events or anthropogenic activities. In this study, selected samples of surface sediments of the Ría de Pontevedra (NW Spain) were subjected to a procedure of aerobic oxidation to determine the concentration of some elements (Fe, Mn, Cu, Cr, Pb, Hg, and Zn) released from the sediment to the aqueous phase. The experiment was carried out within 5 days. Measurements of pH and total concentration were taken both in water and sediment samples. Furthermore, speciation of trace elements was carried out in the sediment samples. Trace element concentrations were lower in the sediments during aerobic oxidation, being released to the aqueous phase. From an environmental point of view, Cu was the only trace element released in quantities that may be toxic for the organisms in the area. This problem of sediment oxidation related to dredging activities or natural storm conditions should be considered in environmental impact studies and transferred to stakeholders. |
---|---|
ISSN: | 0167-6369 1573-2959 1573-2959 |
DOI: | 10.1007/s10661-024-12950-2 |