Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata)

The mollusc shell is a hard tissue consisting of calcium carbonate and organic matrices. The organic matrices are believed to play important roles in shell formation. In the present study, we extracted and purified a novel matrix protein, named Prismalin-14, from the acid-insoluble fraction of the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2004-08, Vol.382 (Pt 1), p.205-213
Hauptverfasser: Suzuki, Michio, Murayama, Emi, Inoue, Hirotaka, Ozaki, Noriaki, Tohse, Hidekazu, Kogure, Toshihiro, Nagasawa, Hiromichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mollusc shell is a hard tissue consisting of calcium carbonate and organic matrices. The organic matrices are believed to play important roles in shell formation. In the present study, we extracted and purified a novel matrix protein, named Prismalin-14, from the acid-insoluble fraction of the prismatic layer of the shell of the Japanese pearl oyster (Pinctada fucata), and determined its whole amino acid sequence by a combination of amino acid sequence analysis and MS analysis of the intact protein and its enzymic digests. Prismalin-14 consisted of 105 amino acid residues, including PIYR repeats, a Gly/Tyr-rich region and N- and C-terminal Asp-rich regions. Prismalin-14 showed inhibitory activity on calcium carbonate precipitation and calcium-binding activity in vitro. The scanning electron microscopy images revealed that Prismalin-14 affected the crystallization of calcium carbonate in vitro. A cDNA encoding Prismalin-14 was cloned and its expression was analysed. The amino acid sequence deduced from the nucleotide sequence of Prismalin-14 cDNA was identical with that determined by peptide sequencing. Northern-blot analysis showed that a Prismalin-14 mRNA was expressed only at the mantle edge. In situ hybridization demonstrated that a Prismalin-14 mRNA was expressed strongly in the inner side of the outer fold of the mantle. These results suggest that Prismalin-14 is a framework protein that plays an important role in the regulation of calcification of the prismatic layer of the shell.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj20040319