Biomechanical Analysis of a New Odd-Numbered Strand Suture Technique for Early Active Mobilization After Primary Flexor Tendon Repair
The placement of multistrand sutures during flexor tendon repair is complex and challenging. We developed a new, simpler, nine-strand suture, which we term the Tajima nines. The Tajima nines repair method is a new odd-numbered strand tendon technique. Fourteen porcine flexor tendons were transected...
Gespeichert in:
Veröffentlicht in: | Journal of hand surgery global online 2024-07, Vol.6 (4), p.488-493 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The placement of multistrand sutures during flexor tendon repair is complex and challenging. We developed a new, simpler, nine-strand suture, which we term the Tajima nines. The Tajima nines repair method is a new odd-numbered strand tendon technique.
Fourteen porcine flexor tendons were transected and repaired using the Tajima nines repair method, without placement of peripheral sutures. This technique is a modification of the Lim and Tsai repair method; it uses a 4-0 monofilament nylon, 3-strand line, and two needles. The repaired tendons were tested for linear, noncyclic, load-to-failure tensile strength. The initial gap, 2-mm gap-formation force, and ultimate strength were measured.
The initial gap-formation force was 27.9 ± 7.5 newtons (N), the 2-mm gap-formation force was 39.2 ± 4.7 N, and the ultimate strength was 76.7 ± 17.2 N. Eight, three, and three of the 14 tendons repaired using the Tajima nines method demonstrated failure because of thread breakage, knot failure, and suture pull-out, respectively.
This biomechanical study demonstrated that Tajima nines repair was associated with particularly high initial tension at the repair site; there were minor variations in the initial load and 2-mm gap-formation load. Our results suggest that Tajima nines repair with peripheral suturing allows the repaired flexor tendon to tolerate the stresses encountered during early active mobilization.
This simple nine-strand technique will be particularly useful for inexperienced surgeons who perform early active mobilization after primary flexor tendon repair because the technique is a modification of the Lim and Tsai repair method using a triple strand instead of a double strand. |
---|---|
ISSN: | 2589-5141 2589-5141 |
DOI: | 10.1016/j.jhsg.2024.02.013 |