Data augmentation for generating synthetic electrogastrogram time series
To address an emerging need for large number of diverse datasets for rigor evaluation of signal processing techniques, we developed and evaluated a new method for generating synthetic electrogastrogram time series. We used electrogastrography (EGG) data from an open database to set model parameters...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2024-09, Vol.62 (9), p.2879-2891 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To address an emerging need for large number of diverse datasets for rigor evaluation of signal processing techniques, we developed and evaluated a new method for generating synthetic electrogastrogram time series. We used electrogastrography (EGG) data from an open database to set model parameters and statistical tests to evaluate synthesized data. Additionally, we illustrated method customization for generating artificial EGG time series alterations caused by the simulator sickness. Proposed data augmentation method generates synthetic EGG data with specified duration, sampling frequency, recording state (postprandial or fasting state), overall noise and breathing artifact injection, and pauses in the gastric rhythm (arrhythmia occurrence) with statistically significant difference between postprandial and fasting states in > 70% cases while not accounting for individual differences. Features obtained from the synthetic EGG signal resembling simulator sickness occurrence displayed expected trends. The code for generation of synthetic EGG time series is not only freely available and can be further customized to assess signal processing algorithms but also may be used to increase data diversity for training artificial intelligence (AI) algorithms. The proposed approach is customized for EGG data synthesis but can be easily utilized for other biosignals with similar nature such as electroencephalogram.
Graphical abstract |
---|---|
ISSN: | 0140-0118 1741-0444 1741-0444 |
DOI: | 10.1007/s11517-024-03112-0 |