Direct stimulation by tyrosine phosphorylation of microtubule-associated protein (MAP) kinase activity by granulocyte-macrophage colony-stimulating factor in human neutrophils

Human polymorphonuclear neutrophils exhibit a low level of the microtubule-associated protein kinase (MAPK) activity. This enzymic activity is enhanced up to 3-fold upon cell stimulation with the human haematopoietic hormone granulocyte-macrophage colony-stimulating factor (GM-CSF). This is demonstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1993-04, Vol.291 (1), p.211-217
Hauptverfasser: GOMEZ-CAMBRONERO, J, COLASANTO, J. M, CHI-KUANG HUANG, SHA'AFI, R. I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human polymorphonuclear neutrophils exhibit a low level of the microtubule-associated protein kinase (MAPK) activity. This enzymic activity is enhanced up to 3-fold upon cell stimulation with the human haematopoietic hormone granulocyte-macrophage colony-stimulating factor (GM-CSF). This is demonstrated both in whole-cell lysates and in DEAE-anion-exchange semi-purified fractions prepared from GM-CSF-stimulated neutrophils, by assaying the kinase activity against either myelin basic protein or a phosphoacceptor peptide that bears the specific phosphorylation site of the MAPK natural substrate. Similarly, phosphorylation of MAPK in tyrosine residues, as found in immunoblots using anti-phosphotyrosine antibodies, follows similar time- and dose-response curves as the kinase activation. Pretreatment of the cells with the tyrosine kinase inhibitor genistein abrogates the above-mentioned effect, whereas the phosphatase inhibitor okadaic acid enhances both the basal and the GM-CSF-stimulated kinase activities. Likewise, MAPK tyrosine phosphorylation is diminished in genistein-treated neutrophils, and enhanced in okadaic acid-treated cells. We conclude that MAPK activity is present in human neutrophils, and that it is stimulated by GM-CSF. This stimulation of the activity is most likely due to the phosphorylation of MAPK in tyrosine residues triggered upon binding of GM-CSF to its receptors.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj2910211