Active-site characterization of S1 nuclease II : involvement of histidine in catalysis

Modification of the histidine residues of purified S1 nuclease resulted in loss of its single-stranded (ss)DNAase, RNAase and phosphomonoesterase activities. Kinetics of inactivation indicated the involvement of a single histidine residue in the catalytic activity of the enzyme. Furthermore, histidi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1992-12, Vol.288 (2), p.571-575
Hauptverfasser: Gite, S, Reddy, G, Shankar, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modification of the histidine residues of purified S1 nuclease resulted in loss of its single-stranded (ss)DNAase, RNAase and phosphomonoesterase activities. Kinetics of inactivation indicated the involvement of a single histidine residue in the catalytic activity of the enzyme. Furthermore, histidine modification was accompanied by the concomitant loss of all the activities of the enzyme, indicating the presence of a common catalytic site responsible for the hydrolysis of ssDNA, RNA and 3'-AMP. Substrate protection was not observed against Methylene Blue- and diethyl pyrocarbonate (DEP)-mediated inactivation. The histidine (DEP)-modified enzyme could effectively bind 5'-AMP, a competitive inhibitor of S1 nuclease, whereas the lysine (2,4,6-trinitrobenzenesulphonic acid)-modified enzyme showed a significant decrease in its ability to bind 5'-AMP. The inability of the substrates to protect the enzyme against DEP-mediated inactivation, coupled with the ability of the modified enzyme to bind 5'-AMP effectively, suggests the involvement of histidine in catalysis.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj2880571