NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions

Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain–machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created “NeuroRoots,” a biomimetic multi-channel implant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-08, Vol.14 (8), p.085109-085109-12
Hauptverfasser: Ferro, Marc D., Proctor, Christopher M., Gonzalez, Alexander, Jayabal, Sriram, Zhao, Eric, Gagnon, Maxwell, Slézia, Andrea, Pas, Jolien, Dijk, Gerwin, Donahue, Mary J., Williamson, Adam, Raymond, Jennifer, Malliaras, George G., Giocomo, Lisa, Melosh, Nicholas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain–machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created “NeuroRoots,” a biomimetic multi-channel implant with similar dimensions (7 μm wide and 1.5 μm thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode “roots,” each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum in vitro and in vivo. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain–machine interfacing.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0216979