Elucidating and Optimizing the Photochemical Mechanism of Coumarin-Caged Tertiary Amines

Photoactivatable or “caged” pharmacological agents combine the high spatiotemporal specificity of light application with the molecular specificity of drugs. A key factor in all optopharmacology experiments is the mechanism of uncaging, which dictates the photochemical quantum yield and determines th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-07, Vol.146 (30), p.20627-20635
Hauptverfasser: Banala, Sambashiva, Jin, Xiao-Tao, Dilan, Tanya L., Sheu, Shu-Hsien, Clapham, David E., Drenan, Ryan M., Lavis, Luke D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoactivatable or “caged” pharmacological agents combine the high spatiotemporal specificity of light application with the molecular specificity of drugs. A key factor in all optopharmacology experiments is the mechanism of uncaging, which dictates the photochemical quantum yield and determines the byproducts produced by the light-driven chemical reaction. In previous work, we demonstrated that coumarin-based photolabile groups could be used to cage tertiary amine drugs as quaternary ammonium salts. Although stable, water-soluble, and useful for experiments in brain tissue, these first-generation compounds exhibit relatively low uncaging quantum yield (Φu < 1%) and release the toxic byproduct formaldehyde upon photolysis. Here, we elucidate the photochemical mechanisms of coumarin-caged tertiary amines and then optimize the major pathway using chemical modification. We discovered that the combination of 3,3-dicarboxyazetidine and bromine substituents shift the mechanism of release to heterolysis, eliminating the formaldehyde byproduct and giving photolabile tertiary amine drugs with Φu > 20%a 35-fold increase in uncaging efficiency. This new “ABC” cage allows synthesis of improved photoactivatable derivatives of escitalopram and nicotine along with a novel caged agonist of the oxytocin receptor.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c03092